# Hierarchical bases of finite elements on rectangles 

Ivana Pultarová

Department of Mathematics, Faculty of Civil Engineering CTU in Prague, Institute of Computer Science, Academy of Sciences of Czech Republic

## Seminar on Numerical Analysis'08, Liberec

Discretization
CBS constant
Optimal preconditioning
Conclusion, Quiz

## The Problem.

We search for a function $u$ in a Hilbert space $H$ such that

$$
a(u, v)=f(v)
$$

for all $v \in H$.
Bilinear form $a(.,$.$) is elliptic H, f($.$) is linear in H$. Energetic norm is given $\|v\| \|=\sqrt{a(v, v)}$.

Discretization of the problem. $U_{h}$ is a finite-dimensional subspace of $H$ generated by a set of finite element basis functions corresponding to the mesh size $h$. Find $u_{h} \in U_{h}$ such that

$$
a\left(u_{h}, v\right)=f(v)
$$

for all $v \in U_{h}$.
A bigger space $V_{h}, U_{h} \subset V_{h} \subset H$. Approximate solution $v_{h}$ in $V_{h}$ is given by

$$
a\left(v_{h}, v\right)=f(v), \quad v \in V_{h} .
$$

## Hierarchy

Hierarchical decomposition of the space $V_{h}$

$$
V_{h}=U_{h} \oplus W_{h} .
$$

We assume that there exists a constant $\gamma(\gamma<1)$ not dependent on $h$ such that the strengthened Cauchy - Bunyakowski - Schwarz (CBS) inequality

$$
|a(u, w)| \leq \gamma|\|u|\|\mid\| w\| \|
$$

holds for all $u \in U_{h}, w \in W_{h}$.
In this case we solve a system of equations in a $2 \times 2$ block form

$$
B\binom{\tilde{u}_{W}}{\tilde{u}_{U}}=\left(\begin{array}{cc}
B_{W} & B_{W U} \\
B_{U W} & B_{U}
\end{array}\right)\binom{\tilde{u}_{W}}{\tilde{u}_{U}}=\binom{F_{W}}{F_{U}} .
$$

If we choose for $M$ the block diagonal of $B$, the preconditioned system of equations has the condition number

$$
\kappa\left(M^{-1} B\right) \leq \frac{1+\gamma}{1-\gamma} .
$$

## CBS constant

We now consider the space of piecewise bilinear functions with rectangular supports $U_{h}$ and two types of hierarchical refining:

$$
V_{0, h}=U_{h} \oplus W_{0, h} \quad \text { a } \quad V_{1, h}=U_{h} \oplus W_{1, h}
$$

The space $W_{0, h}$ involves piecewise bilinear functions with smaller supports (h-hierarchy).

The space $W_{1, h}$ involves polynomials of higher order $\left(Q_{2}\right)$ ( $p$-hierarchy).

The numbers of degrees of freedom for $V_{0, h}$ and for $V_{1, h}$ are equal.


## CBS constant

We now consider the space of piecewise bilinear functions with rectangular supports $U_{h}$ and two types of hierarchical refining:

$$
V_{0, h}=U_{h} \oplus W_{0, h} \quad \text { a } \quad V_{1, h}=U_{h} \oplus W_{1, h}
$$

The space $W_{0, h}$ involves piecewise bilinear functions with smaller supports (h-hierarchy).

The space $W_{1, h}$ involves polynomials of higher order $\left(Q_{2}\right)$ ( p -hierarchy).

The numbers of degrees of freedom for $V_{0, h}$ and for $V_{1, h}$ are equal.


## CBS constants

CBS constants $\gamma$ for h-hierarchy and for p -hierarchy are

$$
\gamma_{0} \leq \sqrt{\frac{3}{4}} \quad \text { a } \quad \gamma_{1} \leq \sqrt{\frac{5}{6}}
$$

if $a(.,$.$) is a generalized laplacian with coefficients piecewise constant on$ macroelements.

If the operator $a(.,$.$) and the geometry of the elements are izotropic, the CBS$ constants for h-hierarchy and for p-hierarchy are

$$
\gamma_{0} \leq \sqrt{\frac{3}{8}} \quad \text { a } \quad \gamma_{1} \leq \sqrt{\frac{5}{11}}
$$

P-version of hierarchy leads to $\gamma \rightarrow 1$ for FEs on triangles and rectangles for general elliptic operator.

## CBS constants for hierarchical FEs

Linear elements (Courant) [Jung, Maitre, 1997, Axelsson, Blaheta, 2004] $\gamma \leq \sqrt{\frac{3}{4}}$ for anizotropic equation or elements, $\gamma \leq \sqrt{\frac{1}{2}}$ for izotropic problem, $\gamma \leq \sqrt{\frac{m^{2}-1}{m^{2}}}$ for the hierarchy of higher order.

Bilinear elements [P, 2005] $\gamma \leq \sqrt{\frac{3}{4}}$ for the anizotropy, and $\gamma \leq \sqrt{\frac{3}{8}}$ for izotropic problem. For a higher hierarchy, $H=4 h, \gamma \leq \sqrt{\frac{5}{6}}$ when the problem is anizotropic.

Nonconforming elements (Crouzeix-Raviart) [Blaheta, Margenov, Neytcheva, 2004] lead to $\gamma \leq \sqrt{\frac{3}{4}}$, [Kraus, Margenov, Synka, 2007].

Bilinear nonconforming elements (Rannacher-Turek) [Georgiev, Kraus, Margenov, 2006], various schemes of hierarchy lead e.g. to $\gamma \leq \sqrt{\frac{3}{8}}$ or $\gamma \leq \sqrt{\frac{5}{12}}$.

Preconditioning for $p$-hierarchical linear elements [Beuchler, 2003].

## Optimal preconditioning for the block $B_{W}$

We solve the system

$$
\left(\begin{array}{cc}
B_{W} & B_{W U} \\
B_{U W} & B_{U}
\end{array}\right)\binom{\tilde{u}_{W}}{\tilde{u}_{U}}=\binom{F_{W}}{F_{U}}
$$

preconditioned by the matrix

$$
M=\left(\begin{array}{cc}
B_{W} & 0 \\
0 & B_{U}
\end{array}\right)
$$

Big jumps in coefficients may destroy good conditioning of $B_{W}$.
In 1999 Axelsson and Padiy discovered that a tri-diagonal matrix can be found (after a proper reordering the elements in $W$ ) in such a way that

$$
\kappa\left(C_{W}^{-1} B_{W}\right)
$$

is bounded independently on the coefficients. For linear elements

$$
\kappa\left(C_{W}^{-1} B_{W}\right) \leq \frac{1+\sqrt{\frac{7}{15}}}{1-\sqrt{\frac{7}{15}}} \approx 5.31
$$

## Optimal preconditioning for the block $B_{W}$ for h-hierarchy

The same idea can be used for bilinear elements.
Matrix $C_{W}$ is built elementwise - certain off-diagonal elements are omitted from the macroelement stiffness matrice $\$$. refining grid,
Marix $C_{W}$ is built ementwise - certain off-diagonal

If $\frac{A_{11} d_{y}^{2}}{A_{22} d_{x}^{2}}>1$ then the "strong connections" $\alpha$ are kept.

( $A_{i j}$ are the coefficients in the equation;
size of a macroelement is $d_{x} \times d_{y}$.)
We also have
$\kappa\left(C_{W}^{-1} B_{W}\right) \leq \frac{5+\sqrt{19} \cos (\phi / 3)}{5-\sqrt{19} \cos (\phi / 3-\pi / 3)} \approx 4.81$,
where $\cos (\phi)=467 /\left(8 \sqrt{19^{3}}\right)$.


An example of renumbering the elements in $W$.

## Optimal preconditioning for the block $B_{W}$ for multiple h-hierarchy

A higher hierarchy allows also to use this preconditioning.
The Figure shows an example of the choice
of the "strong" connections involved
in the macroelement stiffness matrix in case $\frac{A_{11} d_{y}^{2}}{A_{22} d_{x}^{2}}>1(\alpha)$ or $<1(\beta)$.


In the Graph - the condition number of $C_{W}^{-1} B_{W}$ for $\frac{A_{11} d_{y}^{2}}{A_{22} d_{x}^{2}} \in(0,1)$ when the coarse and the fine meshes are in the relation $H=4 h$


## Optimal preconditioning for the block $B_{W}$ for p-hierarchy

The Figure shows the choice of the "strong" connections for p -hierrachy.

It can be reached $\kappa\left(C_{W}^{-1} B_{W}\right) \leq 8.2$, when "connections" $\alpha$ or $\beta$ are kept.


Once again, the criterion is $\frac{A_{11} d_{y}^{2}}{A_{22} d_{x}^{2}}>1$ for $\alpha$ etc.
The analytical estimate exploiting ovals
of Cassisni yields $\kappa\left(C_{W}^{-1} B_{W}\right) \leq 11.2$.

An example of renumbering the elements in $W$ in order to obtain the tri-diagonal matrix $C_{W}$.


## Conclusion

1. New estimates of CBS constant for hierarchical FEs on rectangles for $h$ - and p-hierarchy.
2. Optimal preconditioning for the block $B_{W}$.
3. Hierarchical bases enable the a posteriori error estimates.

## Quiz

The uniform estimate of the CBS constant $\gamma$ for hierarchical piecewise cubic polynomials (splines) on a line and for the scalar product $a(u, v)=\int_{c}^{d} u^{\prime} v^{\prime} \mathrm{d} x$ is $\gamma \leq \sqrt{\frac{5}{8}}$.

The uniform estimate of the CBS constant $\gamma$ for these elements and for the the scalar product $a(u, v)=\int_{c}^{d} u^{\prime \prime} v^{\prime \prime} \mathrm{d} x$ is
a) $\gamma=0 \ldots$ inherited from linear elements on a line $\ldots$

b) $\gamma \leq \sqrt{\frac{3}{4}} \ldots$ similar to linear elements in $2 d$
c) $\gamma \rightarrow 1$ when $h \rightarrow 0$


## Quiz

The uniform estimate of the CBS constant $\gamma$ for hierarchical piecewise cubic polynomials (splines) on a line and for the scalar product $a(u, v)=\int_{c}^{d} u^{\prime} v^{\prime} \mathrm{d} x$ is $\gamma \leq \sqrt{\frac{5}{8}}$.

The uniform estimate of the CBS constant $\gamma$ for these elements and for the the scalar product $a(u, v)=\int_{c}^{d} u^{\prime \prime} v^{\prime \prime} \mathrm{d} x$ is
a) $\gamma=0 \ldots$ inherited from linear elements on a line $\ldots$
b) $\gamma \leq \sqrt{\frac{3}{4}} \ldots$ similar to linear elements in 2 d


## Quiz

The uniform estimate of the CBS constant $\gamma$ for hierarchical piecewise cubic polynomials (splines) on a line and for the scalar product $a(u, v)=\int_{c}^{d} u^{\prime} v^{\prime} \mathrm{d} x$ is $\gamma \leq \sqrt{\frac{5}{8}}$.

The uniform estimate of the CBS constant $\gamma$ for these elements and for the the scalar product $a(u, v)=\int_{c}^{d} u^{\prime \prime} v^{\prime \prime} \mathrm{d} x$ is
a) $\gamma=0 \ldots$ inherited from linear elements on a line $\ldots$
b) $\gamma \leq \sqrt{\frac{3}{4}} \ldots$ similar to linear elements in 2 d
c) $\gamma \rightarrow 1$ when $h \rightarrow 0$


## Quiz

The uniform estimate of the CBS constant $\gamma$ for hierarchical piecewise cubic polynomials (splines) on a line and for the scalar product $a(u, v)=\int_{c}^{d} u^{\prime} v^{\prime} \mathrm{d} x$ is $\gamma \leq \sqrt{\frac{5}{8}}$.

The uniform estimate of the CBS constant $\gamma$ for these elements and for the the scalar product $a(u, v)=\int_{c}^{d} u^{\prime \prime} v^{\prime \prime} \mathrm{d} x$ is
a) $\gamma=0 \ldots$ inherited from linear elements on a line $\ldots$
b) $\gamma \leq \sqrt{\frac{3}{4}} \ldots$ similar to linear elements in 2 d
c) $\gamma \rightarrow 1$ when $h \rightarrow 0$

The answer is $\quad \gamma=0$.


## Thank you!

