Total FETI method for sensitivity analysis in contact shape optimization problems

> Vít Vondrák Zdeněk Dostál David Horák Dept. of Applied Mathematics VŠB-Technical University of Ostrava Czech Republic

Outline

- Contact problems
- FETI and Total FETI methods
- Optimality of solution algorithm
- Numerical experiments
- Contact shape optimization
- FETI based sensitivity analysis
- Conclusions

Contact problem

Variational inequality $a(u, v-u) \ge b(v-u), \quad \forall v \in C$ \downarrow $\min \frac{1}{2}u^T K u - u^T f,$ s.t. $B_I u \le c_I$

$$K = \begin{pmatrix} K_1 & 0 \\ & \ddots & \\ 0 & & K_P \end{pmatrix}$$

SNA'08

FETI domain decomposition method

$$\min \frac{1}{2}u^T K u - u^T f \text{ subject to } B_I u \le c_I, B_E u = 0$$

SNA'08

FETI solution of contact problem

 $\min \frac{1}{2}\lambda^T F \lambda - \lambda^T d \text{ subject to } \lambda_I \ge o, \ E \lambda = g$

$$F = BK^{+}B^{T} \quad d = BK^{+}f - c$$
$$E = R^{T}B^{T} \quad g = R^{T}f$$

Reconstruction formula

$$u = K^+ (f - B^T \lambda) + R\xi$$

with appropriate vector $\xi \in N_{rbm}$

$$K^{+} = diag\left(K_{1}^{+}, ..., K_{N}^{+}\right)$$
$$\lambda = \begin{bmatrix} \lambda_{E} \\ \lambda_{I} \end{bmatrix}, B = \begin{bmatrix} B_{E} \\ B_{I} \end{bmatrix}, c = \begin{bmatrix} o \\ c_{I} \end{bmatrix}$$
span{ $R_{*,i}$ } = null K

Construction of R is costly and depends on some ε !

FARHAT, C., GERARDIN, M., On the general solution by a direct method for a large scale singular system of linear equation. Int. Journal for Num. Meth. in Engng., 1998, vol. 41, p. 675-696.

Total FETI domain decomposition method

Primal problem

$$\min \frac{1}{2}u^T K u - u^T f \text{ subject to } B_I u \le c_I, B_E u = 0, B_B u = 0$$

Total FETI solution of contact problem

 $\min \frac{1}{2}\lambda^T F \lambda - \lambda^T d \text{ subject to } \lambda_I \ge o, \ E \lambda = g$

$$F = BK^{+}B^{T} \quad d = BK^{+}f - c$$
$$F = B^{T}B^{T} \quad a = B^{T}f$$

Reconstruction formula

$$u = K^+ \left(f - B^T \lambda \right) + R\xi$$

with appropriate vector $\xi \in$

$$K^{+} = diag\left(K_{1}^{+}, ..., K_{N}^{+}\right)$$
$$\lambda = \begin{bmatrix} \lambda_{B} \\ \lambda_{E} \\ \lambda_{I} \end{bmatrix}, B = \begin{bmatrix} B_{B} \\ B_{E} \\ B_{I} \end{bmatrix}, c = \begin{bmatrix} o \\ o \\ c_{I} \end{bmatrix}$$
span{ $R_{*,i}$ } = null K

R is a-priori known!

6*N*

MPRGP for bound constrained QP

(QPB) $\min \frac{1}{2} \lambda^T F \lambda - \lambda^T d$ subject to $\lambda \ge o$

- Proportioning
- Conjugate gradient step
- Expansion step (direction of reduced projected gradient)
- Modified Proportioning Reduced Gradient Projection

Proportioning λ proportional: $\|\beta(\lambda)\|^2 \leq \Gamma^2 \tilde{\varphi}^T(\lambda) \varphi(\lambda)$

Reduction of the active set for non-proportional iterations

Proportional iterations

Feasible conjugate gradient step:

Projection step: expansion of the active set

SMALBE for bound and equality constrained QP

(QPBE) $\min \frac{1}{2} \lambda^T F \lambda - \lambda^T d$ subject to $\lambda \ge o$, $E\lambda = o$

Augmented Lagrangian with projected gradient

$$L(\lambda,\mu,\rho) = f(\lambda) + \mu^{T} E \lambda + \frac{1}{2} \rho \left\| E \lambda \right\|^{2}$$

- Outer loop: Update of μ
- Inner loop: Inexact MPRGP

$$\frac{\mu \leftarrow \mu + \rho E \lambda}{\left\| g^{P} \left(\lambda, \mu, \rho \right) \right\| \leq M \left\| E \lambda \right\|}$$

SemiMonotonic Augmented Lagrangian for Bound and Equality constrained QP

Optimality of SMALBE

• Penalty ρ is uniformly bounded $\rho \leq \gamma M^2 / \lambda_{\min}(F)$

- SMALBE generates λ at O(1) outer iterations
- SMALBE with MPRGP generates λ at O(1) matrix-vector multiplications

DOSTÁL, Z. Inexact semi-monotonic augmented Lagrangians with optimal feasibility convergence for convex bound and equality constrained quadratic programming. SIAM Journal on Numerical Analysis, 2005, vol. 43, 1, s. 96-115.

Scalability of Total FETI

Model problem up to 2 130 048 dofs

SNA'08

2D semi-coercive problem

	Man Display Window <@hrozen0> TOPIDONDIC V 3.8 CU Booller, Colorado USA		★ Man Display Window <@intracent> TOP/DONDEE V-2.8 CU Boulies, Colorado USA					
		FETI	Total FETI	Ratio				
	Primal/Dual var.	726/77	726/134	1.74				
	CG steps	18	34	1.89				
SI	In cooperation with C. Farhat, P. Avery, Stanford University SNA'0828.1-1.2. 2008							

3D semi-coercive problem

In cooperation with C. Farhat, P. Avery, Stanford University

SNA'08

3D Hertz problem

	FETI	Total FETI	Ratio
Primal/Dual var.	11430/84	11430/2911	34.66
CG steps	12	447	37.25

In cooperation with J. Dobiáš, S. Pták, Academy of Sciences of Czech Rep. 28.1-1.2. 2008

Contact shape optimization

 $\begin{cases} \min \mathfrak{I}(\alpha, u(\alpha)) \\ \alpha \in U_{ad} \end{cases}$ $\mathfrak{I}(\alpha, u(\alpha)) \dots \text{ objective function} \\ u(\alpha) \text{ solves contact problem:} \\ \min \frac{1}{2} u^T K(\alpha) u - u^T f(\alpha) \\ \text{subject to } B(\alpha) u \leq c(\alpha) \end{cases}$ $Variational inequality \\ a_{\alpha}(u, v - u) \geq b_{\alpha}(v - u), \quad \forall v \in C_{\alpha} \end{cases}$

SNA'08

General solution scheme

SNA'08

Finite difference sensitivity analysis

$$\frac{\partial u(\alpha)}{\partial \alpha_i} \approx \frac{u(\alpha + he_i) - u(\alpha)}{h}$$

where

 $u(\alpha + he_i)$ solves $\min \frac{1}{2}u^T K(\alpha + he_i)u - u^T f(\alpha + he_i)$ subject to $B(\alpha + he_i)u \le c(\alpha + he_i)$

and
$$e_i = (0, ..., 0, 1, 0, ..., 0), i = 1, ..., m$$

- Advantage
 - Simple implementation
- Disadvantages
 - m+1 assemblies of stiffness matrix
 - m+1 solution of contact problem (m+1 decompositions of K)
 - m+1 constructions of R
 - numerically unstable
- Does "semi-analytical" method exist?

28.1-1.2. 2008

Semi-analytical sensitivity analysis

 $I_{C} = \left\{ i : B_{i,*}(\alpha)u(\alpha) = c_{i}(\alpha) \right\} \dots \text{ indices of nodal variables in contact}$ $I_{S} = \left\{ i : i \in I_{C} \land \lambda_{i}(\alpha) > 0 \right\} \dots \text{ indices of nodal variables in strong contact}$ $I_{W} = \left\{ i : i \in I_{C} \land \lambda_{i}(\alpha) = 0 \right\} \dots \text{ indices of nodal variables in weak contact}$

$$u'(\alpha,\beta) = \lim_{h\to 0} \frac{1}{h} \left(u(\alpha+h\beta) - u(\alpha) \right)$$

solves

$$\min \frac{1}{2} z^T K(\alpha) z - z^T \overline{f}(\alpha, \beta)$$

s.t. $B_W(\alpha) z \le c_W(\alpha, \beta), B_S(\alpha) z = c_S(\alpha, \beta)$

 $\overline{f}(\alpha,\beta) = f'(\alpha,\beta) - K'(\alpha,\beta)u(\alpha) + B'^{T}(\alpha,\beta)\lambda(\alpha)$ $B_{S}(\alpha) = \left[B_{i}(\alpha)\right]_{i\in I_{S}}, c_{S}(\alpha,\beta) = \left[f'_{i}(\alpha,\beta) - B'_{i,*}(\alpha,\beta)u(\alpha)\right]_{i\in I_{S}}$ $B_{W}(\alpha) = \left[B_{i}(\alpha)\right]_{i\in I_{W}}, c_{W}(\alpha,\beta) = \left[f'_{i}(\alpha,\beta) - B'_{i,*}(\alpha,\beta)u(\alpha)\right]_{i\in I_{W}}$

Haslinger, Neittaanmäki, Finite Element Approximation for Optimal Shape, Material and Topology Design

28.1-1.2.2008

FETI based sensitivity analysis

 $\min \frac{1}{2} \overline{\lambda}^T \overline{F}(\alpha) \overline{\lambda} - \overline{\lambda}^T \overline{d}(\alpha, \beta) \quad \text{s. t.} \quad \overline{\lambda}_w \ge o, \ \overline{E}(\alpha) \overline{\lambda} = \overline{g}(\alpha, \beta)$ where

 $\overline{F}(\alpha) = \overline{B}(\alpha)K^{+}(\alpha)\overline{B}^{T}(\alpha), \ \overline{d}(\alpha,\beta) = \overline{B}(\alpha)K^{+}(\alpha)\overline{f}(\alpha,\beta) - \overline{c}(\alpha,\beta),$ $\overline{E}(\alpha) = R^{T}(\alpha)\overline{B}^{T}(\alpha), \ \overline{g}(\alpha,\beta) = R^{T}(\alpha)\overline{f}(\alpha,\beta)$

$$\overline{B}(\alpha) = \begin{bmatrix} B_W(\alpha) \\ B_S(\alpha) \end{bmatrix}, \quad \overline{c}(\alpha, \beta) = \begin{bmatrix} c_W(\alpha, \beta) \\ c_S(\alpha, \beta) \end{bmatrix}, \quad \overline{\lambda} = \begin{bmatrix} \overline{\lambda}_W \\ \overline{\lambda}_S \end{bmatrix}$$

$$u'(\alpha, \beta) = K^{+}(\alpha) \left(\overline{f}(\alpha, \beta) - \overline{B}(\alpha)^{T} \overline{\lambda}(\alpha, \beta) \right)$$
$$+ R(\alpha) \zeta$$
with such appropriate ζ

Only one assembly and one decomposition of stiffness matrix for all β = e_i, i=1,...,m
R(α) is invariant!
I_W is typically empty

B=B_S
only equality
constraints

SMALE for equality constrained QP

(QPE) $\min \frac{1}{2} \overline{\lambda}^T \overline{F}(\alpha) \overline{\lambda} - \overline{\lambda}^T \overline{d}(\alpha, \beta)$ subject to $\overline{E}(\alpha) \overline{\lambda} = o$

Augmented Lagrangian

$$L(\overline{\lambda},\mu,\rho) = f(\overline{\lambda}) + \mu^T \overline{E}(\alpha)\overline{\lambda} + \frac{1}{2}\rho \left\|\overline{E}(\alpha)\overline{\lambda}\right\|^2$$

- Outer loop: Update of μ
- Inner loop: Inexact PCG

$$\mu \leftarrow \mu + \rho \overline{E}(\alpha) \overline{\lambda}$$

$$\left\|g\left(\overline{\lambda},\mu,\rho\right)\right\| \leq M\left\|\overline{E}(\alpha)\overline{\lambda}\right\|$$

SemiMonotonic Augmented Lagrangian for Equality constrained QP

SNA'08

Parallel implementation

SNA'08

Model problem "scont"

Alg.	Var.	State	DV1	DV2	DV3	DV4	DV5	DV6		
FETI	Dual	41	12	12	12	12	12	12	State	DV
	CG	61	7	8	8	8	8	7	4.05	11.42
Total	Dual	166	137	137	137	137	137	137	1.71	4.33
FETI	CG	108	32	32	30	30	30	36	28.1-1	.2. 2008

"scont" optimized design

Conclusions

- Total FETI has a-priori known null spaces of subdomain stiffness matrices
- Solution algorithms have O(1) rate of convergence
- Semi-analytical method significantly speeds up the optimization process
 - In each design step only one stiffness matrix assembly and one decomposition - no null space recomputing
 - No numerical instability caused by perturbation parameters
 - Significant reduction of inequality constraints (if any):
 typically only SMALE outer loop iterations

SNA'08