Parallel Computing and Iterative Solution of Linear Systems

R. Blaheta
Institute of Geonics AS CR, Ostrava, Czech Republic &

VŠB-TU Ostrava

www.ugn.cas.cz

SNA '05 Ostrava, February 7-11, 2005

Outline of the talk

Aim: describe parallel iterative solvers for PDE-FEM linear algebraic systems, discuss their mathematical/computer implementation aspects

- Paralelization of CG and other iterative methods
- Block diagonal and full block preconditioners
- Overlapping Schwarz DD methods
- Convergence analysis
- Two-level Schwarz methods
- Algebraic constructions of coarse grid problem
- Nonoverlapping DD methods
- What is not considered

Literature

- Chan, T.F., Mathew, T.P., Domain Decomposition Algorithms. Acta Numerica 1994, 61-143
- Smith, B.F., Bjørstad, P.E., Gropp, W.D., Domain Decomposition Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge 1996
- A. Toselli, O. Widlund, Domain Decomposition Methods Algorithms and Theory, Springer 2004
- R. Blaheta, Space decomposition Preconditioners and Parallel Solvers. In: M. Feistauer et al. eds. Numerical Mathematics and Advanced Appl., Springer 2004, pp. 20-38 (ENUMATH 2003 invited lecture)
- R. Blaheta, O. Jakl, J. Starý, Linear sytem solvers based on space decompositions and parallel computations, Inženýrská Mechanika, 10(2003), pp. 439-454

The Problem

For modelling of different phenomena as diffusion etc., it is necessary to solve a a symmetric elliptic boundary value problem in Ω like:

$$-\sum_{ij} \frac{\partial}{\partial x_i} \left(k_{ij} \frac{\partial u}{\partial x_j} \right) = f \quad \text{in } \Omega$$

$$u = \hat{u} \quad \text{on } \Gamma_0 \subset \partial \Omega$$

$$\sum_{ij} k_{ij} \frac{\partial u}{\partial x_j} n_i = \hat{f} \quad \text{on } \Gamma_1 \subset \partial \Omega$$

Discretization by FEM leads to an algebraic problem

$$Au = b$$

with a matrix A, which is SPD, large scale (dimension $n \sim 10^5 - 10^7$) and ill conditioned.

Linear System Solvers

- direct methods (Gauss elimination type)
- iterative methods history
 - relaxation (Gauss, Jacobi, Southwell)
 - SOR (Young 1954, Varga 1962)
 - CG (Hestenes, Stiefel, Lanczos, 1952)
 - practical CG (Reid 1971)
 - ILU preconditioning (Axelsson 1972, van der Vorst 1977,...)
 - multigrid (Fedorenko 1964, Hackbusch 1977, ...), AMG
 - GMRES (Saad, Schulz 1986)
 - DD, //iterative methods (Dryja, Widlund, ...1st DD conf. 1989)
- iterative methods today: Numerical scalability (optimal linear complexity), Parallel scalability, Robustness, Nonsymmetric Systems...

Sequential CG

end

given u^0 compute $r^0 = b - Au^0$, $q^0 = B^{-1}r^0, r^0 = q^0, \sigma = \langle r^0, q^0 \rangle$ for $i = 0, 1, \ldots$ until convergence do $w^i = Av^i$ $\alpha_i = \sigma/\langle v^i, w^i \rangle$ $u^{i+1} = u^i + \alpha_i v^i$ $r^{i+1} = r^i - \alpha_i w^i$ $q^{i+1} = B^{-1}r^{i+1}$ $\sigma_0 = \sigma, \quad \sigma = \langle r^{i+1}, g^{i+1} \rangle$ $\beta_i = \sigma/\sigma_0$ $v^{i+1} = q^{i+1} + \beta_i v^i$

CG iteration needs

- matrix-by-vector multiplication
- vector updates
- two inner products

Preconditioning

$$g = G(r) = B^{-1}r$$

standard B - SPD
 $\#it \sim \sqrt{\operatorname{cond}(B^{-1}A)} \ln(1/\varepsilon)$

Convergence test

$$\parallel r^i \parallel \leq \varepsilon \parallel b \parallel$$

Parallelization by Splitting to Blocks

v, w, A are full (**accumulated**) vectors and matrix,

$$\underline{v} = (\underline{v}_1, \ \underline{v}_2)^T, \ w = (\underline{w}_1, \ \underline{w}_2)^T, \ \underline{A} = (A_1, \ A_2)^T$$
 are **distributed** data.

Distribution on two processors \mathbb{P}_1 and \mathbb{P}_2 , $\mathbb{P}_k \Leftrightarrow \{A_k, \underline{v}_k, \underline{w}_k, v, w\}$.

- Matrix-by-vector multiplication $\underline{w}_k = A_k \cdot v$
- inner product $\sigma = \langle v, w \rangle$ or $\sigma_k = \langle v, \underline{w}_k \rangle \rightarrow \sigma = \sum \sigma_k$
- vector updates $v = v + \alpha \cdot w$ or $\underline{v}_k = \underline{v}_k + \alpha \cdot \underline{w}_k$

Preconditioning by Splitting to Blocks

$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ & A_{22} & A_{23} & A_{24} \\ & & A_{33} & A_{34} \\ sym & & & A_{44} \end{bmatrix} = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} \Rightarrow B = \begin{bmatrix} B_{11} \\ & B_{22} \end{bmatrix}$$

B additive (block diagonal, block Jacobi) preconditioner

$$A = \begin{bmatrix} I & & & & \\ B_{21}B_{11}^{-1} & I \end{bmatrix} \begin{bmatrix} B_{11} & & & \\ & S \end{bmatrix} \begin{bmatrix} I & B_{11}^{-1}B_{12} \\ 0 & I \end{bmatrix}$$

$$\Rightarrow B_M = \begin{bmatrix} I & & \\ B_{21}B_{11}^{-1} & I \end{bmatrix} \begin{bmatrix} B_{11} & & \\ & B_{22} \end{bmatrix} \begin{bmatrix} I & B_{11}^{-1}B_{12} \\ & I \end{bmatrix}$$

 B_M symmetric multiplicative (full block, Gauss-Seidel) preconditioner

Parallel CG

given u^0

compute
$$\mathbf{r}^0 = \mathbf{b} - \mathbf{A}u^0$$
,

$$\mathbf{g}^{0} = B^{-1}\mathbf{r}^{0}, \ v^{0} = \mathbf{g}^{0}, \ \sigma = \langle \mathbf{r}^{0}, \mathbf{g}^{0} \rangle$$

for $i = 0, 1, \ldots$ until convergence do

$$\mathbf{w}^i = \mathbf{A}v^i$$

$$\alpha_i = \sigma/\langle v^i, \mathbf{w}^i \rangle$$
 (C)

$$u^{i+1} = u^i + \alpha_i v^i$$

$$\mathbf{r}^{i+1} = \mathbf{r}^i - \alpha_i \mathbf{w}^i$$

$$\mathbf{g}^{i+1} = B^{-1}\mathbf{r}^{i+1}$$

$$\sigma_0 = \sigma, \quad \sigma = \langle \mathbf{r}^{i+1}, \mathbf{g}^{i+1} \rangle \quad (\mathbf{C})$$

$$\beta_i = \sigma/\sigma_0$$

$$v^{i+1} = \mathbf{g}^{i+1} + \beta_i v^i$$
 (C)

end

Parallel computation:

multiple arithmetic
units & better memory
access

v accumulated

 $\mathbf{v} = \underline{v}$ distributed

 (\mathbf{C})

communication points

Block diagonal preconditioner

Properties of the //CG & Preconditioning

- parallel implementation of the block diagonal preconditioning, no communication, parallel scalability depends on the cost of the necessary communications,
- numerical scalability (efficiency): number of iterations vs. complexity of one iteration.
- \bullet for a general splitting into m blocks and m processors:
 - 1. for m small, the solution of systems with B_k is expensive,
 - 2. for m big, the preconditioner is not efficient.

Note: $m \to n$: $B = \operatorname{diag}(A) \Rightarrow \operatorname{cond}(B^{-1}A) = O(h^{-2})$. Remedies:

- 1. for m small, use an approximation to B_k , e.g. incomplete factorization,
- 2. for m big, use more efficient efficient methods, e.g. Schwarz overlapping DD methods.

Block diagonal - overlapping DD preconditioners

$$u = \begin{bmatrix} \underline{u}_1 \\ \vdots \\ \underline{u}_m \end{bmatrix} \quad A = \begin{bmatrix} A_{11} & \dots & A_{1m} \\ \vdots & & \vdots \\ A_{m1} & \dots & A_{mm} \end{bmatrix} \quad \text{preconditioner } B,$$

$$\bullet \quad R_k \text{ Boolean } \dots n_k \times n,$$

$$\bullet \quad \underline{u}_k = R_k u,$$

- additive blok diagonal preconditioner B,

- $B^{-1}r = \sum R_k^T A_{kk}^{-1} R_k r$

Block splitting - DD:

increase of δ : overlapping DD Schwarz methods: $B^{-1}r$

$$B^{-1}r = \sum_{k} R_{k}^{T} A_{kk}^{-1} R_{k} r$$

space decomposition - subspace coorrection methods

Schwarz method/preconditioner

Alternating Schwarz method - existence of the solution of BVPs in more general domains, H.A. Schwarz 1870

Preconditioner

$$B^{-1}r = \sum_{k} R_{k}^{T} A_{kk}^{-1} R_{k} r$$

- A.M. Matsokin, S.V. Nepomnyaschikh (1985)
- Lions, P.L. (1987): On the Schwarz alternating methods I.
 In: 1st Internat. Symposium on Domain Decomposition Methods for PDE, SIAM, pp. 1-42
 - M. Dryja, O.B. Widlund (1989), Towards a unified theory of domain decomposition algorithms for elliptic problems, 3rd *Internat. Symposium on Domain Decomposition Methods for PDE*, SIAM, pp. 3-21

Overlapping Subdomains

Coarse partition of Ω into Ω_k^H with auxiliary grid of size H.

Refinement of the domain partition with grid size h.

Extension of Ω_k^H with size βH into overlapping subdomains Ω_k .

Parallelization of the overlapping DD

Subdomain matrix \underline{A}_k e.g. FEM matrix corresponding to the problem in Ω_k with the Dirichlet BC on inner boundary Γ_k realized by penalty scaling of diagonal elements. $A_k = R_k^T A R_k$ is involved in \underline{A}_k . Subdomain vector \underline{v}_k includes all DOFs in the subdomain $\Omega_k \setminus \partial \Omega_{Dirichlet}$ including the DOFs on Γ_k .

v, w, A are full (global) vectors and matrix,

Distribution on processors $\mathbb{P}_k \Leftrightarrow \{\underline{A}_k, \ \underline{v}_k, \ \underline{w}_k\}$ (only **local** data).

- Matrix-by-vector multiplication $\underline{w}_k = \underline{A}_k \cdot \underline{v}_k$ and transfer of data to DOFs on Γ_k .
- inner product $\sigma_k = \langle \underline{v}_k, \underline{w}_k \rangle \sum_{j \text{ in overlap}} \frac{1 K_j}{K_j} \underline{v}_{k,j} \cdot \underline{w}_{k,j} \to \sigma = \sum_{j \text{ overlap}} \sigma_k$
- vector updates $\underline{v}_k = \underline{v}_k + \alpha \cdot \underline{w}_k$

Parallel CG with overlapping DD preconditioner

```
given u^0
           compute \mathbf{r}^0 = \mathbf{b} - \mathbf{A}u^0.
           \mathbf{g}^{0} = B^{-1}\mathbf{r}^{0}, \ \mathbf{v}^{0} = \mathbf{g}^{0}, \ \ \sigma = \langle \mathbf{r}^{0}, \mathbf{g}^{0} \rangle
for i = 0, 1, \ldots until convergence do
           \mathbf{w}^i = \mathbf{A}\mathbf{v}^i (C)
           \alpha_i = \sigma/\langle \mathbf{v}^i, \mathbf{w}^i \rangle (C)
           \mathbf{u}^{i+1} = \mathbf{u}^i + \alpha_i \mathbf{v}^i
           \mathbf{r}^{i+1} = \mathbf{r}^i - \alpha_i \mathbf{w}^i
           \mathbf{g}^{i+1} = B^{-1}\mathbf{r}^{i+1} (C)
           \sigma_0 = \sigma, \quad \sigma = \langle \mathbf{r}^{i+1}, \mathbf{g}^{i+1} \rangle \quad (\mathbf{C})
           \beta_i = \sigma/\sigma_0
           \mathbf{v}^{i+1} = \mathbf{g}^{i+1} + \beta_i \mathbf{v}^i
```

CG with additive Schwarz preconditioner

Only local vectors $\mathbf{v} = \underline{v}$ and local matrices \mathbf{A}

(C) communication points

end

Effect of the overlap

Model problem:

$$\Omega = \langle 0, 2 \rangle \times \langle 0, 3 \rangle$$
$$- \triangle u = f \text{ in } \Omega$$
$$u = 0 \text{ on } \partial \Omega$$
$$h=1/30, n=5100$$

Ω_1
Ω_2
Ω_3
Ω_4

	δ:	h	2h	3h
$\mid m \mid$	H:	_	_	_
2		19	14	11
4		26	19	16
6		32	23	19
8		36	26	22
10		40	28	23
12		43	31	25

Numbers of iterations for $\varepsilon=10^{-4}$ with additive precond., overlap $\delta=h$ - Block Jacobi, $\delta>h$ Schwarz

Space decompositions

$$R^n, R_k: R^n \to R^{n_k} \ (k = 1, \dots, m), \ I_k: R^{n_k} \to R^n, \ I_k = R_k^T$$

$$R^n = \sum_k \text{ range}(I_k)$$

$$A_k = R_k^T A R_k$$

Abstract setting - finite dimensional Hilbert space V

$$V = V_1 + \ldots + V_m$$

$$V, R_k : V \to V_k \ (k = 1, \ldots, m), \ I_k : V_k \to V, \ I_k = R_k^T$$

$$Au = b, \ u \in V, \ b \in V', \ A \in L(V, V')$$

$$A \text{ is SPD } \leftrightarrow \langle Au, v \rangle = \langle Av, u \rangle, \ \langle Av, v \rangle > 0 \ \Rightarrow \langle u, v \rangle_A$$

$$A_k = R_k^T A R_k$$

- analysis in the FE spaces,
- investigation of DD and other decomp. (DiD) in a unique framework.

Space decomposition preconditioners

$$G: r \mapsto g, \ g \sim A^{-1}r \ (pseudores.)$$

$$g=0$$
for $k=1,\ldots,m$
 $g \leftarrow g + I_k \tilde{A}_k^{-1} R_k z_k$
end

$$\tilde{A}_k \sim R_k A I_k = A_k$$
 $S_k(z) \sim A_k^{-1} z$
exact
inexact – linear
– nonlinear

additive preconditioner G_A :

$$z_k = r, \ k = 1, \dots, m$$

multiplicative preconditioner

$$G_M$$
:

$$z_k = r - Ag$$

hybrid preconditioner G_H , e.g.:

$$z_k = r \ k = 1, \dots, m-1$$

$$z_m = r - Ag$$

symmetric SD preconditioner nonsymmetric symmetrization

$$k = 1, \ldots, m - 1, m, m - 1, \ldots, 1$$

SD analysis, $V = V_1 + ... + V_m$

- Assumption **A1** (stability) $\forall v \in V \exists v_k \in V_k : v = v_1 + \ldots + v_m$ $\sum_k \|v_k\|_A^2 \leq K_0 \|v\|_A^2.$
- Assumption **A2** $\forall v \in V \ \forall v_k \in V_k : v = v_1 + \ldots + v_m$ $\parallel v \parallel_A^2 \leq K_1 \sum_k \parallel v_k \parallel_A^2$.
- Note: Trivial bound $K_1 = m$. Potentially m-independent bounds: If $\mathcal{E} = (\varepsilon_{kl})$, $\varepsilon_{kl} = \cos(V_k, V_l)_A$, then $K_1 \leq \rho(\mathcal{E}) \leq \max \sum_l \varepsilon_{kl}$. If $\mathcal{E}_0 = (\varepsilon_{kl} : k, l \neq j)$, then $K_1 \leq 2(1 + \rho(\mathcal{E}_0))$.
- Theorem: Let A1, A2 hold. Then $\lambda_{\min}(G_A A) \geq 1/K_0, \ \lambda_{\max}(G_A A) \leq K_1, \text{ cond } (G_A A) \leq K_0 K_1$ $\parallel I G_S A \parallel_A = \parallel I G_M A \parallel_A^2 \leq \left(1 \frac{1}{K_0(1 + K_1)^2}\right)^2.$

Matsokin, Nepomnyaschikh 1985, Lions 1988, Dryja, Widlund 1987,1989, Bramble, Pasciak, Wang, Xu 1991, Bjørstad, Mandel 1991

Domain decomposition (DD)

 $\Omega = \Omega_1 \cup \ldots \cup \Omega_m$ aligned with \mathcal{T}_h overlap $\delta = \operatorname{dist} (\partial \Omega_k \cap \Omega_l, \partial \Omega_l \cap \Omega_k)$ subdomain size $\mathbf{H} = \max \operatorname{diam}(\Omega_k)$ $\delta = \beta \mathbf{H}$. $\mathbf{H} \to 0 \Rightarrow \delta \to 0$

$$\Omega_k \to V_k = \{ v \in V_h : v = 0 \text{ on } \Omega \setminus \Omega_k \}$$

- ex. partition of unity $\theta_1, \ldots, \theta_m$ $\sum \theta_k = 1$ on Ω $\theta_k \in C^{\infty}\left(R^d\right), \theta_k = 0 \text{ on } R^d \backslash \Omega_k \Rightarrow K_0 = C\left(1 + \delta^{-2}\right)$ $\| \nabla \theta_k \|_{L^{\infty}(\Omega)} \le c/\delta$
- ex. interpolation $\Pi_h:C\left(\Omega\right)\to V_h$

- $V_h = V_1 + \ldots + V_m$, $v \in V_h \Rightarrow$
- $v = \sum_{k} v_k$, $v_k = \prod_{k} (\theta_k v)$
- $K_1 \leq \rho(\mathcal{E})$ independent on m

$$\operatorname{cond}(G_A A) \leq C(1 + \delta^{-2}), \text{ etc.}$$

Two-level domain decomposition

$$\Omega = \Omega_1 \cup \ldots \cup \Omega_m$$

$$V_h = V_0 + V_1 + \ldots + V_m$$

$$V_0 = \{v \in V: \ v \mid_T \in P_1 \ \forall T \in \mathcal{T}_H\}$$

$$H < \mathbf{H}, \text{ qualitative analysis } H = \mathbf{H}$$

$$v \in V_h \implies \text{ex.} \quad v_0 = Qv \in V_0$$

(1) $|v_0|_{H^1(\Omega)} \le c_1 |v|_{H^1(\Omega)}$
(2) $||v - v_0||_{L_2(\Omega)} \le c_2 H |v|_{H^1(\Omega)}$

Properties (1), (2) are valid if Q is L_2 - orthogonal projection onto V_0 (Bramble, Xu 1991)

$$\bullet \ v \in V \Rightarrow v = v_0 + v_1 + \ldots + v_m$$

•
$$v_0 = Qv$$
, $v_k = \Pi_h \left(\theta_k(v - v_0)\right)$

•
$$K_0 = C \left(1 + \delta^{-2} H^2 \right)$$

•
$$K_1 \leq 2(1 + \rho(\mathcal{E}))$$

 $\operatorname{cond}(G_A A) \leq C \left(1 + \delta^{-2} H^2\right)$, etc.

Overlapping DD preconditioners: A model problem

Model problem:

$$\Omega = \langle 0, 2 \rangle \times \langle 0, 3 \rangle$$

$$- \triangle u = f \text{ in } \Omega$$
$$u = 0 \text{ on } \partial \Omega$$

Ω_1
Ω_2
Ω_3
Ω_4

	δ :	h	2h	3h	h	2h	3h	3h	3h	3h
$\mid m \mid$	H:	l	_	_	$\frac{1}{15}$	$\frac{1}{15}$	$\frac{1}{15}$	$\frac{1}{15}$	$\frac{1}{5}$	$\frac{1}{4}$
2		19	14	11	9	8	8	8	9	9
4		26	19	16	9	8	8	8	10	10
6		32	23	19	9	9	9	9	10	10
8		36	26	22	9	9	9	9	10	10
10		40	28	23	10	9	9	9	10	10
12		43	31	25	9	9	9	9	10	10

Numbers of iterations for $\varepsilon=10^{-4}$ with additive precond., overlap $\delta=h$ - Block Jacobi, $\delta>h$ Schwarz

Two-level domain decomposition with aggregations

$$Q: V_h \to V_0$$
, $Qv = \sum \alpha_k(v) \psi_k$
 $\alpha_k = \frac{1}{\mu(\text{supp}\psi_k)} \int_{\text{supp}\psi_k} u(x) dx$

Then:

$$\bullet \mid Qv \mid_{H^1(\Omega)}^2 \le c \frac{H}{h} \mid v \mid_{H^1(\Omega)}^2$$

$$\parallel v - Qv \parallel_{L_{2(\Omega)}} \leq CH \mid v \mid_{H^{1}(\Omega)}$$
 (weak approximation property)

$$\Omega = \Omega_1 \cup \ldots \cup \Omega_m$$

$$V_h = \operatorname{span} \left\{ \phi_i^h \right\}_{i=1}^n$$

$$\{1, \dots, n\} = J_1 \cup \dots \cup J_N, \text{ disjoint}$$

$$V_0 = \operatorname{span} \left\{ \psi_i \right\}, \ \psi_i = \sum_{j \in J_i} \phi_j^h$$

$$c_1 H^d \leq |\operatorname{supp} \psi_i| \leq c_2 H^d, H \leq \{\mathbf{H}, kh\}$$

•
$$V_h = V_0 + V_1 + \ldots + V_m$$

$$\bullet \ v \in V \Rightarrow v = v_0 + v_1 + \ldots + v_m$$

•
$$v_0 = Qv$$
, $v_k = \Pi_h \left(\theta_k(v - v_0)\right)$

•
$$K_0 = C \left(1 + h^{-1}H + \delta^{-2}H^2 \right)$$

•
$$K_1 \leq 2(1 + \rho(\mathcal{E}))$$

cond
$$(G_A A) \leq K_0 K_1$$
, etc.

Blaheta 1986,1989, Braess 1994, Vaněk, Mandel, Brezina 1996, Brezina 1997, Jenkins et al. 2001

Two-level DD with interfaces on coarse grid

$$ar{\Omega} = ar{\Omega}_1 \cup \ldots \cup ar{\Omega}_m, \quad \Omega_k \cap \Omega_l = \emptyset \text{ for } k \neq l$$

$$\Omega_k \to V_k : \varepsilon_{kl} = \cos(v_k, v_l)_A = 0 \text{ for } k \neq l$$

$$V_1 + \ldots + V_m = W \neq V_h$$

 $V_0 \dots$ by coarse triangulation or by aggregations with missing DOF $\Rightarrow V_h = V_0 + W$,

 $R_0:V_h\to V_0$ interpolation to nodes of \mathcal{T}_H or selected nodes from J_k

 $R_k: V_h \to V_k, \ R_k v(x) = v(x)$ for nodes from Ω_k

$$v \in V_h \to v = v_0 + v_1 + \dots + v_m$$

 $v_0 = R_0 v, v_k = R_k (v - v_0)$

$$V_h = V_0 \oplus W_0, \ W_0 \subset W, \ W_0 = \sum R_k (I - R_0) V_h$$

$$\gamma = \cos(V_0, W_0)_A$$
 $K_0 = 1/(1-\gamma), K_1 = 1+\gamma$

CBS constant - boundary macroelements

$$\gamma = \sup \left\{ \frac{a(v,w)}{\sqrt{a(v,v)}\sqrt{a(w,w)}} : v \in V_0, w \in W_0, v, w \neq 0 \right\}$$

$$a(v, w) = \sum_{E} a_{E}(v, w) = \sum_{E} \int_{E} \langle D \nabla v, \nabla w \rangle dx$$

 $\gamma = \max \gamma_E$, E - inner/interface macroelement

Interface:
$$v \in V_0(E) \to \nabla v = (\delta_x, \, \delta_y)$$
 in $T_1, \, T_2$. $w \in W_0(E) \to \nabla w = (d_x, \, d_y)$ in $T_1, \, \nabla w = (d_x, \, -d_y)$ in T_2 , $\nabla w = 0$ in

$$V_0$$
 V_0

 T_3, T_4 . If $D = \operatorname{diag}[k_x, k_y]$, then

$$a_{E}(v, w) = 2k_{x}\delta_{x} d_{x} \Delta$$

$$a_{E}(v) \leq 2k_{x}\delta_{x}^{2} \Delta$$

$$a_{E}(w) \leq 2(k_{x}d_{x}^{2} + k_{y}d_{x}^{2})\Delta$$

$$\Rightarrow \gamma_{E} \leq \sqrt{\frac{k_{x}}{k_{x} + k_{y}}}.$$

CBS constant - inner macroelements

Maitre, Musy 1981:

 $\gamma = \sqrt{1/2}$ for isotropic Laplacian and rectangular elements, $m_p = 2$.

- m_p fold refinement!
- anisotropic Laplacian
- general elasticity $c_{i,j,k,l}$!
- arbitrary element shape

$$\gamma \leq \sqrt{rac{m_p^2-1}{m_p^2}}$$
 Axelsson, RB 2001

 m_p^3 tetrahedra

$$\gamma \le \sqrt{1 - \frac{2}{m_p^4 + m_p^2}}$$

RB NLAA 2003

Nonlinear and Nonsymmetric Preconditioners

- For A_k corresponding to subdomain, we successfully replace A_k by incomplete factorization.
- For coarse grid subproblem A_0 , the same strategy is inefficient. More accurate approximation to A_0 is necessary, e.g. by inner PCG iterations. Then the pseudoresidual is g = G(r) but G is not linear.
- It can be difficult to construct A_0 and solve this subproblem in a time comparable with the solution of subdomain problems A_k . Then it may be advantageous to use hybrid aditive-multiplicative algorithm:
 - coarse grid correction is computed individually,
 - residual is updated and subdomain problems are solved in parallel.

The hybrid algorithm gives g = G(r) with G linear (for linear subproblem solvers) but not symmetric. The symmetrization is relative expensive and not necessary, an alternative is nonsymmetric preconditioner with GPCG.

Inner iterations GPCG[s] method

given
$$u^0 \to r^0 = b - Au^0$$
, $g^0 = G(r^0)$, $v^0 = g^0$
for $i = 0, 1, ...$ until $|| r^i || \le \varepsilon || b ||$ do

$$w^i = Av^i$$

$$\alpha_i = \sigma_i / \langle w^i, v^i \rangle$$

$$u^{i+1} = u^i + \alpha_i v^i$$

$$r^{i+1} = r^i - \alpha_i w^i$$

$$v^{i+1} = q^{i+1} = G(r^{i+1})$$

for $k = 1, ..., \min\{i + 1, s\}$ do

$$\beta_{i+1}^{(k)} = (\langle g^{i+1}, r^{i+2-k} \rangle - \langle g^{i+1}, r^{i+1-k} \rangle) / \sigma_{i+1-k}$$

$$v^{i+1} = v^{i+1} + \beta_{i+1}^{(k)} v^{i+1-k}$$

end
$$\Rightarrow \sigma_{i+1}$$

end

Extra:

 $s-1 imes ext{vector storage}$ $r^i, r^{i-1}, \dots, r^{i+2-s}(r^0)$ $s imes ext{inner products}$ $\langle g^{i+1}, r^{i+1-k} \rangle,$ $k = 1, \dots, \min\{i+1, s\}$

For s=1: one extra inner product

DD preconditioners: A model problem

Model problem:

$$\Omega = \langle 0, 2 \rangle \times \langle 0, 3 \rangle$$

$$- \triangle u = f \text{ in } \Omega$$
$$u = 0 \text{ on } \partial \Omega$$

h=1/30, n=5100

Ω_1
Ω_2
Ω_3
Ω_4

Overlap 2h, #subdomains:	2	4	8	12	16	24
no coarse grid	12	16	22	23	31	37
c-grid H=3h, AP	7	7	8	8	7	8
c-grid H=3h, HP	6	6	6	6	6	6
aggreg. 2h, AP	12	13	15	16	17	17
aggreg. 2h, HP		10	11	11	11	11
interface & aggreg. 2h, AP	13	14	14	14	14	14
interface & aggreg. 2h, HP	7	8	7	8	8	8

Numbers of iterations for $\varepsilon=10^{-3}$. AP=additive preconditioner, HP=hybrid preconditioner + GPCG[1]

DD preconditioners: Another model problem

$$-\triangle u = 2\pi^2 \sin(\pi x)\sin(\pi y)$$
 in $\Omega = \langle 0, 1 \rangle^2$ and $u = 0$ on $\partial \Omega$

	p=4		p=	:16	p=64		
Fine grid	Bas	\mathbf{B}^{ms}	Bas	\mathbf{B}^{ms}	Bas	\mathbf{B}^{ms}	
h = 1/48	37	20	110	58	377	193	
h = 1/96	41	22	124	65	423	221	
h = 1/192	45	24	138	72	478	248	

Table 1: overlap $\beta=1/6$, accuracy $\varepsilon=10^{-4}$, (see Knut-Andreas Lie, Uni. Oslo, 2001)

	p=4		p=	:16	p=64		
Fine grid	\mathbf{B}_{H}^{as}	\mathbf{B}_{H}^{ms}	\mathbf{B}_{H}^{as}	\mathbf{B}_{H}^{ms}	\mathbf{B}_{H}^{as}	\mathbf{B}_{H}^{ms}	
h = 1/48	9	6	12	5	7	4	
h = 1/96	10	6	13	5	9	5	
h = 1/192	11	7	15	6	10	5	

Table 2: two-level Schwarz preconditioners

AS preconditioners - a geotechnical problem.

Overlap 2h. The sub-solvers: subdomain = incomplete factor-

ization, the aggregated problem = inner PCG with $\varepsilon_0 = 10^{-1}$.

-z

Left: #iterations. Right: times [s] on THEA.

	one-level	two-leve	el method	
# subd.	method	3x3x3	6x6x6	
2	92	45	56	
3	102	47	60	
4	110	51	64	
6	121	55	70	
7	125	57	72	
8	128	-	_	

one-level	two-level method				
method	3x3x3	6x6x6			
386	267	242			
289	241	175			
242	240	145			
190	244	115			
170	265	111			
161	_	_			

Robustness of DD preconditioners: anisotropy

Model problem:

$$\Omega = \langle 0, 2 \rangle \times \langle 0, 3 \rangle$$

$$-k_x\frac{\partial^2 u}{\partial x^2} - k_y\frac{\partial^2 u}{\partial y^2} =$$

$$f \text{ in } \Omega$$

 $u=0 \text{ on } \partial\Omega$

h=1/30, n=5100

Ω_1
Ω_2
Ω_3

 Ω_4

	δ 2h, #subd's:		4			8			16	
\rangle	no coarse grid	16	$\frac{8}{27}$	$\frac{4}{26}$	22	$\frac{10}{37}$	$\frac{4}{38}$	31	$\frac{14}{52}$	$\frac{5}{61}$
	c-grid H=3h, A	7	$\frac{7}{10}$	$\frac{7}{16}$	8	$\frac{7}{10}$	$\frac{7}{20}$	7	$\frac{7}{11}$	$\frac{7}{26}$
	c-grid H=3h, H	6	$\frac{6}{8}$	$\frac{6}{13}$	6	$\frac{6}{8}$	$\frac{7}{16}$	6	$\frac{6}{10}$	$\frac{7}{22}$
	aggreg. 2h, A	13	$\frac{10}{16}$	$\frac{8}{19}$	15	$\frac{12}{16}$	$\frac{8}{23}$	17	$\frac{13}{19}$	$\frac{9}{30}$
	aggreg. 2h, H	10	$\frac{8}{11}$	$\frac{7}{15}$	11	$\frac{9}{12}$	$\frac{7}{19}$	11	$\frac{9}{13}$	$\frac{8}{25}$
	if. & agg. 2h, A	14	$\frac{11}{14}$	$\frac{8}{22}$	14	$\frac{12}{16}$	$\frac{8}{30}$	14	$\frac{12}{19}$	$\frac{9}{40}$
	if. & agg. 2h, H	8	$\frac{6}{8}$	$\frac{4}{14}$	7	$\frac{6}{9}$	$\frac{5}{16}$	8	$\frac{7}{10}$	$\frac{5}{22}$

Numbers of iterations for $\varepsilon=10^{-3}$. A=additive preconditioner, H=hybrid preconditioner + GPCG[1].

Columns: (1)= isotropy, (2)=
$$\frac{k_x/k_y=10}{k_x/k_y=0.1}$$
, (3)= $\frac{k_x/k_y=100}{k_x/k_y=0.01}$

DD preconditioners: A model parabolic problem

Model problem:

$$\Omega = \langle 0, 2 \rangle \times \langle 0, 3 \rangle$$

$$\frac{\partial u}{\partial t} - \triangle u = f$$

$$u = 0 \text{ on } \partial \Omega$$

h=1/30, n=5100

Ω_1
Ω_2
Ω_3
Ω_4

Overlap 2h, #subd's:	4			8			16		
no coarse grid	16	8	3	22	9	3	31	13	3
c-grid H=3h, AP	7	8	4	8	8	4	7	10	5
c-grid H=3h, HP	6	8	3	6	8		6	10	4
aggreg. 2h, AP	13	8	5	15	8	5	17	10	5
aggreg. 2h, HP	10	6		11	8		11	8	
interf. & aggr. 2h, AP	14	9	5	14	10	5	14	10	5
interf. & aggr. 2h, HP	8	5	3	7	5	3	8	5	3

Numbers of iterations for $\varepsilon=10^{-3}$. AP=additive preconditioner, HP=hybrid preconditioner + GPCG[1].

Column 1: matrix K, columns 2,3: matrix $M + \xi K$ with $\xi = h, h^2$, respectively.

Overlapping DD methods

- :-) overlapping DD is an efficient tool for data decomposition, building preconditioners and construction of parallel algorithms with a small amount of communications
- :-) the efficiency can be substantially increased by adding a rough global problem, which can be defined by coarse grid or aggregations
- :-) there is a variety of DD methods: overlap, nested/non-nested coarse grid, simple/smoothed aggregations, RAS and RASHO, etc.
- :-) new CGR with interface: robustness w.r.t. coefficient jumps between macroelements, no communication between subdomain problems in preconditioning, efficient hybrid version, clear quantitative analysis
- :-) inexact sub-solvers, automatic partition/aggreg. (not PDE systems)
- :-(increase of subproblems due to overlap, decrease of efficiency due to anisotropy

Final remarks

- overlapping DD can be applied to other classes of problems (nonsymmetric, parabolic, saddle point etc), are easy to implement, potentially fully algebraical (black box),
- there are also other classes of nonoverlapping DD methods handling the interface through Schur complement or Lagrangian multipliers (Neumann-Neumann, FETI),
- there are many possible decompositions, which can be used for efficient parallel solvers: beside DD, also composite grid FEM, HB decomposition, AMLI, DiD etc.
- it is possible to combine different decompositions and different (additive/multiplicative) algorithms,
- the two-level concept can be developed to multi-level one for better balance, better efficiency and development of optimal solvers.