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/Outline of the talk

Aim: describe parallel iterative solvers for PDE-FEM linear algebraic
systems, discuss their mathematical /computer implementation aspects

e Paralelization of CG and other iterative methods

e Block diagonal and full block preconditioners

e Overlapping Schwarz DD methods

e Convergence analysis

e Two-level Schwarz methods

e Algebraic constructions of coarse grid problem

e Nonoverlapping DD methods

\o What is not considered

\
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ﬂl’he Problem \

For modelling of different phenomena as diffusion etc. , it is necessary to

solve a a symmetric elliptic boundary value problem in (2 like:

0 ou .
uw =u onlycC o

kaﬁnz :f on I'y C 0N

Discretization by FEM leads to an algebraic problem

Au=0>

with a matrix A, which is SPD, large scale (dimension n ~ 10° — 107) and

w conditioned. /
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/Linear System Solvers \

e direct methods (Gauss elimination type)

e iterative methods - history
— relaxation (Gauss, Jacobi, Southwell)
— SOR (Young 1954, Varga 1962)
— CG (Hestenes, Stiefel, Lanczos, 1952)
— practical CG (Reid 1971)
— ILU preconditioning (Axelsson 1972, van der Vorst 1977,...)
— multigrid (Fedorenko 1964, Hackbusch 1977, ...), AMG
— GMRES (Saad, Schulz 1986)
— DD, //iterative methods (Dryja, Widlund, ...1st DD conf. 1989)

e iterative methods - today: Numerical scalability (optimal linear

k complexity), Parallel scalability, Robustness, Nonsymmetric Systems../
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/Sequential CG

given "

og=o0, 0=/(r

Bi = o/oog

\end

for : =0,1,... until

w' = Av'

a; = o/ (v, w)
w = ut + a0
7“”1 = 7’ — aw"
g — B~ 1 Z-I-l

1+1

Uz—l—l — gz—l—l +ﬁz L

convergence do

9

compute 0 = b — AuP,
@ =B"10 0 = g0 5 = (49

z’—|—1>

,g")

CG i1teration needs

e matrix—by—vector

multiplication
e vector updates

e two inner products

Preconditioning
g=G(r)= B~ lr
standard B - SPD
Hit~
v/econd(B—1A)In(1/¢)

Convergence test

[rtff<ellb] Y.
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/Parallelization by Splitting to Blocks

Ajr A Az Ay A U1 w1
} 1 } Uq } w1
Ago Aoz Aoy U2 w2
A= v = w =
A33 A34 U3 W3
} AQ } (%) } Wo
| sym Agq | | U4 | | wy

v, w, A are full (accumulated) vectors and matrix ,

v=(vqy, )1, w=(wy, wy)!, A= (A1, A)! are distributed data.

Distribution on two processors P; and Py, Pp < {Ag, v, wi, v, w}.
e Matrix-by-vector multiplication w, = Ay - v

e inner product o = (v, w) or o = (v, w)— 0 = > ok

K. vector updates v =v+ a-w or v, = v, + - wy,
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B additive (block diagonal, block Jacobi) preconditioner

All

SYm

A12
A22

4 — 1 1 B
i Bo1By; 1 |
1
= DBy = .
| BuBp' I

reconditioning by Splitting to Blocks

W Bi'Bis
0 I

1 Bi'Bis
Bos I

\BM symmetric multiplicative (full block, Gauss-Seidel) preconditioner

/
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/Parallel CG

for

Qnd

given u

0

compute r’ = b — AuY,
g’ =Bt ' =g’ o=("g"

until convergence do

i=01,...
w! = Av'
a; =0/, w') (C)

w = Ut 4 a0t

— I‘i — OéiWi

gitl — p-lpitl

00 =0, o= (rith gitl)
Bi = a/og

Uz—l—l — gz—l—l ‘|‘ﬁz I

(C)
(C)

Parallel

computation:

multiple arithmetic
units & better memory

aCCEeSS

v accumulated

v = v distributed

(C)

communication points

Block diagonal

preconditioner

/
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/Properties of the //CG & Preconditioning N

e parallel implementation of the block diagonal preconditioning,
no communication, parallel scalability depends on the cost of the

necessary communications,

e numerical scalability (efficiency):

number of iterations vs. complexity of one iteration.

e for a general splitting into m blocks and m processors:
1. for m small, the solution of systems with B} is expensive,

2. for m big, the preconditioner is not efficient.
Note: m — n: B =diag(A) = cond(B~1A) = O(h™?). Remedies:
1. for m small, use an approximation to By, e.g. incomplete factorization,

2. for m big, use more efficient efficient methods, e.g. Schwarz

\ overlapping DD methods. /
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/Block diagonal - overlapping DD preconditioners \

e additive blok diagonal

Uy Ay ... A, preconditioner B,
U = : A = : : e R; Boolean ... ng X n,
Qm Aml « o Amm . uk — Rku7

e B lr = RUA_'Ryr

Block splitting - DD: .
(a)OC “P m(%;: o © increase of 9:

overlapping DD

Schwarz methods:
B~ 1y
— Z R% A];kl Rir

i
i

I
external ~ internal
interface interface

\ space decomposition - subspace coorrection methods /
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/Schwarz method /preconditioner N

e A.M. Matsokin, S.V. Nepom-
nyaschikh (1985)

e Lions, P.L. (1987): On the
Q. Schwarz alternating methods 1.

In: Ist Internat. Symposium on

Domain Decomposition Methods
for PDE, SIAM, pp. 1-42

Alternating Schwarz method - exis- M. Dryja, O.B. Widlund (1989),
tence of the solution of BVPs in more

Towards a unified theory of do-

general domains, H.A. Schwarz 1870 : L :
main decomposition algorithms

for elliptic problems, 3rd Inter-
Preconditioner : :
nat. Symposium on Domain De-

B lr= RIEA_'Ryr composition Methods for PDE,

\ SIAM, pp. 3-21 /
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-

Overlapping Subdomains

Coarse partition of 2 Refinement of the
into Qg with auxiliary domain partition with

grid of size H. grid size h.

N

Extension of ij with

size 3H into overlapping

/

subdomains .
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/Parallelization of the overlapping DD

Subdomain matrix A, e.g. FEM matrix corre-
| sponding to the problem in €2, with the Dirichlet BC

on inner boundary I'y realized by penalty scaling of

diagonal elements. A, = R;‘g A Ry, is involved in A,..

Subdomain vector v, includes all DOFs in the sub-
domain Qf \ OQpirichier including the DOFs on T'y.

v, w, A are full (global) vectors and matrix ,
Distribution on processors Py < {A:, v, w,} (only local data).

e Matrix-by-vector multiplication w, = A, - v, and transfer of data to
DOFs on I'y.

: 1-K,
o inner product ox = (v, Wi) = X2 in overtap &, Lk - Wk 0 = 2. Ok

e vector updates v, = v, + a - w,

N

/




sna ’05 (31st January 2005) 15

‘b

given u

arallel CG with overlapping DD preconditioner

0

compute r’ = b — Au’,

g0 = B~ 110 v0 = g0 & = (r0 g
for 1 =0,1,... until convergence do

wi = Avi_ ((_3) CG  with  additive
67 20/<V27WZ> (C)

utt = u 4 v

Schwarz preconditioner

7

r't! = r' — ayw Only local vectors v = v

gtl = B~y (C) and local matrices A
0p =0, 0 = <ri+17gi+1> (C)

Bi = o/og (C)

vitl = gttl 4 3 v communication points

o /
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/Effect of the overlap \
Model problem:
Q = (0,2) x (0, 3) o0: | h 2h 3h
— Nu= f in € m H: — — —
u =0 on Jf) 2 19 14 11
h=1/30, n=5100
4 20 19 16
) 32 23 19
Q, 8 36 26 22
Q, 10 40 28 23
Q04 12 43 31 25
g Numbers of iterations for ¢ = 10™* with additive

\ precond., overlap 6 = h - Block Jacobi, § > h Schwzw
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/Space decompositions \

R", Ry: R" > R"™ (k=1,...,m), I: R"™ — R", I;, = RT

R"™ =), range(l)
A, — RT AR,

Abstract setting - finite dimensional Hilbert space V'

V=WV+...4+V,
V, Rp: V>V (k=1,....m), Ix: Vpy >V, I, =R{
Au = b, ueV, beV', Ae L(V,V')
Ais SPD < (Au,v) = (Av,u), (Av,v) >0 = (u,v) 4
Ay = RT AR,

e analysis in the FE spaces,

\o investigation of DD and other decomp. (DiD) in a unique frameworkj
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/Space decomposition preconditioners \

additive preconditioner G 4:
G:r—g, g~ A7 (pseudores.) z, =r, k=1,....m
multiplicative preconditioner
g =0 G
for k=1,....m e =1 —Ag

g «— g+ I Alzl Ry, 2 hybrid preconditioner G, e.g.:

2z =r k=1,...,m—1
end
Ay ~ R AL, = Ay | -
Si(2) ~ Alzl - symmetric SD preconditioner
nonsymmetric
exact o
symmetrization

inexact — linear
Ek=1,....m—1,m,m—1,...,1

\ — nonlinear /
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/SD analysis, V=V, +..+V, \

e Assumption A1 (stability) Vv e V Juy € Vy: v=v1 + ... + v
> Lok I3 < Ko [l v 1%
o Assumption A2 YveV Vo, eVi:v=v1+...+vy,

| v < K 32y I ow 1%

e Note: Trivial bound K; = m. Potentially m-independent bounds:
If £ = (5kl), €] = COS (Vk, W)A, then K7 < p(g) < max Zl ELI-
If & = (g : k, 1 # 7), then K1 <2(1+4+ p(&)) -

e¢ Theorem: Let A1, A2 hold. Then
)\min (GAA) Z 1/K07 )\maX (GAA) S K17 cond (GAA) < KOKl

2
| 1= GsA |a=ll I - GuA A< (1= ooy )

Matsokin, Nepomnyaschikh 1985, Lions 1988, Dryja, Widlund 1987,1989, Bramble, Pasciak,

Qvang, Xu 1991, Bjsrstad, Mandel 1991 /
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N

-
=

A
V overlap

e ex. partition of unity 8¢,...,60,,
Z@k =1 on £

/Domain decomposition (DD)

Q=0Q,U...UQ,, aligned with 7,

overlap § = dist (09 Ny, 02 N Q)

subdomain size H = max diam ({2j)
0=0H, H—-0=0—0

QkHVkZ{UEVhZ v=20 OIlQ\Qk}

o Vi, =Vi+...4+V,,,veEV, =

® UV — Zkvk, VUV — Hh (ka)

QkECOO (Rd),ek:() on Rd\ﬂk — ¢ KO:C(1+5_2)

| VO || oo ()< ¢/0
e ex. interpolation IT, : C' () — V},

e K1 < p(€) independent on

cond (G4A) < C (1 + 5_2) : e’y

\

m
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Two-level domain decomposition

Q=0 U...UQy,

Vb=WW+W+...+V,

Vo={veV: v|re PLVT € Ty}

H < H, qualitative analysis H = H

UGVh:>eX- UO:QUE‘/O OUEVZ>U:UO‘|‘UI‘|’---+UM
(1) \ () \Hl(Q)S C1 ‘ % |H1(Q) o vg = Qu, v =1l (Hk(v - UO))

9 _ < coH

@ lv=wliws el vime e oq 4522

Properties (1), (2) are valid if @ o K1 <21+ p(&))

is Lo- orthogonal projection onto
Vo (Bramble, Xu 1991) cond (Gp4A) < C (1 i 5—2]{2), etc.

N /
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Model problem:

Q= (0,2) x (0, 3)

— Au=fin{)
u = 0 on 0f2

h=1/30, n=5100

/Overlapping DD preconditioners: A model proble

\

m

o: | h 2h 3h | h 2h 3h|3h 3h 3h
m H:| - - -~ % %5 15|15 5 1
2 9 14 11,9 8 8|8 9 9
4 20 19 16| 9 & &8 | 8 10 10
6 32 23 19,9 9 9 9 10 10
8 36 26 22,9 9 99 10 10
10 40 28 23|10 9 9 | 9 10 10
12 43 31 2519 9 9|19 10 10

Numbers of iterations for e = 10~* with additive

precond., overlap 6 = h - Block Jacobi, § > h Schwarz

/
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ﬂl’wo—level domain decomposition with aggregations\

Q=0 U...UQy,

Vi, = span {qﬁ?}?:l
{1,...,n} =J1U...UJy, disjoint

. Vo =span{y;}, ¥, = ), (b?

Jj€J;

( - ciHY < |suppy;| < coH?, H < {H, kh}
Q:Vh— Vo, Qu=7 ay(v)y o Vi=W+Vi+...4+V,
O‘k:u(su;pwk) [ wu(x)dr eveEV = v=v+v1+...+ Uy

Suppr
Then: e vo = Qu, v =1l (O(v—1p))

e Ko=C(1+h'H+§2H?)

* | Qu |H1(Q)< e v ‘Hl(Q)
o K1 <2(1+p(E))

o | v—Qu |1y, < CH | v |m1(q)
(weak approximation property) cond (G4 A) < KgK1, etc.
\Blaheta 1986,1989, Braess 1994, Vanék, Mandel, Brezina 1996, Brezina 1997, Jenkins et al. 2001/
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ﬂl’wo-level DD with interfaces on coarse grid \

Q=QU...UQ,, QN =0"fork#l
Qp — Vi 2 egg = cos (vg,v) 4 =0 for k #1
Vi+...+ V0, =W #V,

Vo ... by coarse triangulation or by aggregations
with missing DOF = V;, =V + W,
Ry : Vi, — V4 interpolation to nodes of 7y or

selected nodes from Jj
Ry : Vi, — Vi, Riv(z) = v(x) for nodes from €

veVy,—sv=vg+v1+...+v,
”U():R()”U, Uk:Rk (U—’UQ)

Vio=Vod Wy, WoCW, Wy= ZRk(I—Ro)Vh

v = cos (Vo, Wp) 4
Ko=1/(1—-7), Ki=1+7v /

mﬂ(
(T
(T
T
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C
q

/CBS constant - boundary macroelements

v = sup { \/a(vi)(;\’z/uz(w’w) v e Vo, w e Wy, v,w # O}
a(v,w) =3 ag(v,w)=>_ [ (D Vv, Vw)dz
E E FE

v = max~g, E - inner/interface macroelement

Interface: v € Vo(E) — Vv = (0, 6,) in Ty, Th.
w € Wyo(E) — Vw = (dg, dy) in T,
Vw = (dy, —dy) in Ty, Vw = 0 in
T3,Ty. If D = diag|k,, k;], then
ap (v,w) = 2k, 0, d A \
ag (v) < 2k.0% A > = YE < kwl’ffky.
ap (w) < 2(ked? + k,d2)A

/

\

/
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/CBS constant - inner macroelements

Maitre, Musy 1981.:
v = /1/2 for isotropic Laplacian mg tetrahedra
and rectangular elements, m, = 2.

X3

e m, fold refinement!

e anisotropic Laplacian

o general elasticity ¢; ;1!

1 2

e arbitrary element shape

2
i < \/1 o mg-l-m%
m]%—l

QS 2.— Axelsson, RB 2001 RB NLAA 2003

p
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/N onlinear and Nonsymmetric Preconditioners \

e For A; corresponding to subdomain, we successfuly replace A; by

incomplete factorization.

e For coarse grid subproblem Ay, the same strategy is inefficient. More
accurate approximation to Ag is necessary, e.g. by inner PCG

iterations. Then the pseudoresidual is g = G(r) but G is not linear.

e It can be difficult to construct Ag and solve this subproblem in a time
comparable with the solution of subdomain problems Aj. Then it may

be advantageous to use hybrid aditive-multiplicative algorithm:

— coarse grid correction is computed individually,

— residual is updated and subdomain problems are solved in parallel.
The hybrid algorithm gives g = G(r) with G linear (for linear subproblem

solvers) but not symmetric. The symmetrization is relative expensive and
Qot necessary, an alternative is nonsymmetric preconditioner with GPCG/
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0
for 1 =0,1,...
wt = Av?

a; = o;/{w',v?)

w = Ul 4 !

ritl =t — o

oIl — gi—l—l _ G(,rz'+1>
for k=1,...

end = Oj+1

\end

0 — g
until | 7* || < e || b]|| do

given u’— ¥ = b— Au°, ¢¥ =

,min{z + 1,s} do
ﬂz—l—l _ (<gi—|—1’ z'—|-2—k> .

Uz—l—l _ z—|—1_|_ﬁz+1 Uz—i—l—k

Ti—l—l—k>)

/Inner iterations GPCG|s] method

0

Extra:
s — 1 X vector storage

T, T e A

() 1—1 i—I—Z—S(TO)

sx inner products
<gz'+1 Tz’+1—k:>
Y

Y

k=1,..., min{i +1,s}

/07;+1—k

For s=1: one extra

inner product

/
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/DD preconditioners: A model problem \
Model problem:
Overlap 2h, #subdomains: 21 4] 8|12 | 16 | 24
Q= (0,2) x (0, 3) _
no coarse grid 12 |16 | 22 | 23 | 31 | 37
c-grid H=3h, AP 7 |7 | 8 | 8 7 | 8
—ou=/ing d H=3h, HP 6
u = 0 on 0f) c-grid H=3h, 6 16 /6066
aggreg. 2h, AP 12 | 13 | 15| 16 | 17 | 17
h=1/30, n=5100
aggreg. 2h, HP 9 |10 | 11 |11 | 11 | 11
04 interface & aggreg. 2h, AP | 13 | 14 | 14 | 14 | 14 | 14
05 interface & aggreg. 2h, HP | 7 | 8 | 7 | 8 | 8 | 8
Qs Numbers of iterations for e = 1072. AP=additive
O preconditioner, HP=hybrid preconditioner + GPCG[1]

N /
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-

DD preconditioners: Another model problem

— Aw = 2n2%sin(rz)sin(ny) in Q=(0,1)*> and u=0 on 9O

p=4 p=16 p=064
Fine grid | Ba* | B™MS | B35 | BMS | B35 | B™M*
h=1/48 | 37 | 20 [ 110| 58 | 377 | 193
h=1/96 | 41 | 22 | 124 | 65 | 423 | 221
h=1/192| 45 | 24 | 138 | 72 | 478 | 248

p=4 p=106 p=064
Fine grid | BG® | BI'S | B2 | BI'® | B2® | BI®
h=1/48| 9 | 6 |12 | 5 | 7 | 4
h=1/9%6 |10 | 6 | 13| 5 | 9 | 5
h=1/192| 11 | 7 | 15| 6 | 10| 5

\

Table 1: overlap G = 1/6,

accuracy € = 1074, (see
Knut-Andreas Lie, Uni.
Oslo, 2001)

Table 2:

two-level Schwarz precon-

ditioners

/
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/AS preconditioners - a geotechnical problem.

- ZX
___ X

Overlap 2h. The sub-solvers: subdomain = incomplete factor-
2

ization, the aggregated problem = inner PCG with o = 107" .

Left: #iterations. Right: times [s] on THEA.

one—level | two—level method one-level | two—level method
# subd. | method | 3z3x3 | 6x6x6 method | 3z3x3 | 6x6x6
2 02 45 56 386 267 242
3 102 47 60 289 241 175
4 110 51 64 242 240 145
6 121 55 70 190 244 115
7 125 57 72 170 265 111
\ 8 128 — — 161 — —
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/Robustness of DD preconditioners: anisotropy \

Model problem:

0 2h, #subd’s: 4 8 16
(1 = <Oa 2> X <O>3> no coarse grid 16 2% 2% 22 il))—(; % 31 é—g %
1 7T 77 7T
2 2 cgrid H=3h, A | 7 13 15 |8 19 20| 7 11 26
kY | U . 6 6 6 7 6 7
; .x%ﬁ Y Hy2 c-grid H=3h, H 6 3 13 6 3 16 6 10 22
In 10 8 12 8 13 9
Y — O on aQ aggreg. 2h, A 13 16 19 15 16 23 17 19 30
aggreg. 2h,H |10 = L |11 2 L |lun & 2
h:1/30, n=5100 _ 11 8 12 8 12 9
if. & dagg. 2h, A 14 14 59 14 E % 14 1—9 E
o if. & agg. 2h, H | 8 g ﬁ 7 8 % 8 1—70 25—2

0, Numbers of iterations for ¢ = 1073. A=additive

preconditioner, H=hybrid preconditioner + GPCGJ1].

. ko /ky=10 kz /ky=100
\ Qy Columns: (1)= isotropy, (2)=kx//k520.1, (S)ka//k;O-Olj
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/DD preconditioners: A model parabolic problem \

Model problem: Overlap 2h, #subd's: 4 8 16
no coarse grid 16 8 3|22 9 3|31 13 3
Q= (0,2) x (0,3)
c-grid H=3h, AP 7 8 418 8 4|7 10 5
Iu B c-grid H=3h, HP 6 8 3 6 8 6 10 4
uw =0 on 60 aggreg. 2h, AP 13 8 5|15 8 5|17 10 5
. 2h, HP 10 6 11 8 11 8
h=1/30, n=5100 i
interf. & aggr. 2h, AP | 14 9 5|14 10 5|14 10 5
4 interf. & aggr.2h, HP | 8 5 3| 7 5 3| 8 5 3
0y Numbers of iterations for ¢ = 1073. AP=additive
03 preconditioner, HP=hybrid preconditioner + GPCGJ1].
o Column 1: matrix K, columns 2,3: matrix M + (K

with € = h, h?, respectively.

/
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/Overlapping DD methods \

:-) overlapping DD is an efficient tool for data decomposition, building
preconditioners and construction of parallel algorithms with a small

amount of communications

:-) the efficiency can be substantially increased by adding a rough global

problem, which can be defined by coarse grid or aggregations

:-) there is a variety of DD methods: overlap, nested /non-nested coarse
grid, simple/smoothed aggregations, RAS and RASHO, etc.

:-) new CGR with interface: robustness w.r.t. coefficient jumps between
macroelements, no communication between subdomain problems in

preconditioning, efficient hybrid version, clear quantitative analysis
:-) inexact sub-solvers, automatic partition/aggreg. (not PDE systems)

:-( increase of subproblems due to overlap, decrease of efficiency due to

\ anisotropy /
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/F inal remarks

e overlapping DD - can be applied to other classes of problems
(nonsymmetric, parabolic, saddle point etc), are easy to implement,

potentialy fully algebraical (black box),

e there are also other classes of nonoverlapping DD methods handling
the interface through Schur complement or Lagrangian multipliers

(Neumann-Neumann, FETT),

e there are many possible decompositions, which can be used for
efficient parallel solvers: beside DD, also composite grid FEM, HB
decomposition, AMLI, DiD etc.

e it is possible to combine different decompositions and different

(additive/multiplicative) algorithms,

e the two-level concept can be developed to multi-level one for better

\ balance, better efficiency and development of optimal solvers.

\

/
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-

Thank you for your attention.




