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Outline of the talk

e Hierarchical decompositions and AMLI preconditioners

HB, additive and multiplicative preconditioners, sub-solvers

e Analysis of HD methods through CBS constant

2D and 3D, robustness w.r.t. anisotropy and element shape

e Fully algebraic AMLI with aggregation or agglomeration

decomposition, analysis, CBS, further development

e AMLI for nonconforming FE’s

Two ways of decomposition, CBS, optimal preconditioners
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/Solved problems

BVPin Q=find: veV(Q): a(u,v)=>b(w) YveV(Q),

a(u,v):/Q<DVu,Vv> dzx,

D ... SPD, piecewise constant, physical anisotropy.

V:{UEHl(Q),v(az):OonFo}

FEM: mostly linear triangular/tetrahedral FE. Numerical anisotropy.

Vi =span{g;} CV(Q), un=3Tui¢y, u=[uj]

NLA: Au=0b, Ais SPD. We are interested in solvers with good
\complexz'ty (optimal order), robustness and scalability (parallelizable).

/
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/Hierarchical FEM (geometrical hierarchy) \

Grid hierarchy: FE discretization & system solution

e AMLI : coarse grid space + fine grid complement
e Multigrid: coarse grid space + full fine grid space with cheap solver

e Two-level Schwarz methods: coarse grid space + local fine grid spaces

k‘ Local grid refinement techniques /
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/N odal and hierarchical bases (NB, HB)

¢ Grid 75, nodes N}, = {z1,..., z,}, nodal basis {gb?}?zl C Vi
e Grid 7y, nodes Ny C N}, nodal basis {(,b{{} C Vy

e N}, = Ny UN;" = hierarchical basis:

( gb? if ; € /\/};F

HL C Vi OF =
{sz} h ¢z <\ ¢fl ifajz-ENH

N
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/F E matrices in NB and HB

Transformation of bases:

=N Jwol, J=(Jy) =
k

N

I
191

0
I

Order nodes as: nodes in N, }j first and nodes in Ny next.

Similarly, order both nodal and hierarchical basis functions.

N (V")
N (Vi)

I5; from interpolation, (I21),, :_g%(a:l) , T €N

N B i e
A= |, " l=]a (Z T ol D T ¢?> = JAJT
| Ay Az | k z
e A is denser than A,
o Aj; = Ay, Ayy = Ap ! there is a block with global information

\. S = Ay — Ay Ay} Ay =8 = Agy — Ayt A7 Ao
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NB:

ANp =

N

Vi, = span{¢P}

Aqq
A,

Aio
Ao

both diagonal blocks

with only local information

HB:

V=V + V" =

span{¢P : z; € N (V,;7)}
—I—Span{q§? . x; € N(Vi)}

Agp =

first block with local information, second

with global information.

Ay A

\

Hierarchical decomposition of NB and HB matrices

/
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A — A(k—l—l)

By = Bt

step I
step 11
step Il

I

An Ay I
I

| An Ay I

—1
g1 <— A11 1

g = B]er can be implemented as follows:

— 1
go — Agy (12 — A2191)

ﬁl‘wo-level multiplicative preconditioner

I AjlAp
0 I
I AjlAp
I

g1 — g1 — A Aage = A (11 — A12g0)

Computational cost:

{nultiplication by As1, Aja; 2x vector subtration.

2x solution of systems with A;; ; 1x solution of system with Agy;

/
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ﬁl‘wo-level additive preconditioner \
_ Ay A, | - | A | | a '
T 7477 — _11 _12 LB, — 11 B _ 11
| Aar Az | i A2 || Ag |

Bam A=J A7 T = Bys=J"'BaJ T, o(B;'A) =0(B, A

g = Bgl r=J7 (EA)_l Jr can be implemented as follows:

——1

step 1 go — Agg (ro + I2171)
——1

steplI g1 — A;1r + 15 g0

Computational cost:

1x solution of systems with Ay; = Ay; ; 1x solution of system with Ago:

\2){ vector addition, 1x multiplication with Iy, 1x multiplication with I, /




SNA ’05 (15th January 2006)

10

/Approximate two-level preconditioners

B 4 and B A arise when Agrvi = wy, are solved approximately
v, = appsolve (Zkk, wk) = solve (B, wi)
by exploiting approximation By ~ Ay or inner iterations.

Choices for Aqq:
o B11 = diag(All), Bll = ilu(All), Bll = milu(All),

e inner iterations controled by maxit = n, acc = ¢ with simple

preconditioner.
Choices for Ass:

o B9y = B or Byy = Bf, where BY, Bj, are again hierarchical

preconditioners on the coarser level,

\o inner iterations with preconditioners BY, Bj;.
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Multi-level preconditioners

for k=2,..., m

T — To — . — T, N
A oA L 4m) define N = Ni—1 UN,
define B(k)or B
72 (m) A M
I e — 1[5

for k=2,...,m
define multilevel preconditioner B = Bff) or B = BE\Z)
if k = 2 then B(%) = B(¥)
if k& > 2 then B(®) is approximate two-level preconditioner B®) with

e different appsolve(A11)

e appsolve(Ags) given by vy, iterations of inner Chebyschev

or CG iterations with preconditioner B(*—1).

N /
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/Analysis of two level preconditioners \
Let v <1 be the smallest constant such that:

(40, ) = (Bav, 1) +2(A00®, 00) - L F ) = (Bl A) < L)
(1-7)Ba<A<(1+7)Ba 1—~
i . o _
B-l4 — ! A1_11 Arz I I A1_11A12
N 0 1 S~ Ag 0 I

o(BytA) c o(I)Uo(Ay S) = o(I) Ua(Ay S) C (1 —~2,1)

\ = (B]QlA) <1/(1—~%) = <1+17)2 estimate(s¢(B ;' A)). /
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Analysis of approximate two level preconditioners

Let A be SPD, ~ is as above and a1, as, 81, B2 are positive constants:

a1 < By < G1A ~ 1
1_11 == 61_11 . Then cond(BZlA) < 1_472 5 Q(ﬁlﬁﬁi) .
a9 Aga < Bog < [Ba Ao /(a_ﬁ@)

Let A be SPD, ~ is as above and «, 3 are positive constants:

A1 < By < (1+a)A .
_11 < Bu = )_11 . Then cond(B;;A) < 1_172 (14+ o+ 3).
Agg < Bay < (1+ 3)As

showing desirable properties of By; (small difference Byjv — Ajqv for

smooth vectors v) can be found e.g. in Notay 1997.

N

The above estimates can be found e.g. in Axelsson 2002. Another estimate

\

/
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/Constant v and strengthened CBS inequality \

<Z12@(2), 27<1)> = a(vy, v1), where vo € Viy and v1 € V. = Wj,.

Vi, =V & Vh+, v = cos(Vpy, Vh+) — sup \/a(uag:}a(v = uwe Vg, ve VhJr

Let £ = Ue; be a macroelement,
Local investigation ~:
ueVyg =u ‘EE Py, t.e. u ‘EE Vi (E),

veVr =, € P, v=0invertices of E..V," (E)

A/\ a(u,v) = Z/E (D grad u, grad v) de = ZaE (ug, vg)

E

Theorem:
ap (u,v) u€ Vg (E), ueV," (F)
Y S maxyg, YE = Sup ‘
\ E \/aE (u,u)\/CLE (v, ) u # const., v =0 /
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/CBS in 2D N

How ~ depends on 7

e meshsize h
e refinement multiplicity m

e coeflicient anisotropy

e clement shape

e coefficient jumps

Investigation of ~

o Maitre, Musy 1981: v = +/3/4 2D Laplacian, arbitrary element
shape (y = /3/8 for isosceles, v = 1/1/2 for rectangular triangles)

o Margenov 1994: v = +/3/4 2D elasticity E, v, rectangular triangles

e Achchab, Maitre 1996: v = +/3/4 2D isotrop. elasticity, general

\ triangles /




SNA ’05 (15th January 2006)

16

-

CBS in 2D - recent results

o Axelsson 1999: 2D, anisotropic Laplacian, reference triangle

o Azelsson, Blaheta (KUN Rep. 2001, Appl. Math. 2004):

2D, reference element !, anisotropic Laplacian and general elasticity

— m fold refinement !

— anisotropic Laplacian

— general elasticity ¢; ;1 !

— arbitrary element shape
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/An idea of simple estimate of the CBS in 2D \

ap (u,v) = / (D grad u, grad v) dx
E

YAVAN

affine mapping to R (reference)
F:FE—-R Fr=Gzx+g

ip (U,7) = / <Z§grada, grada;> 7
R

~

D =G1DG G|, agr( =>Jr, <l55 d(k)> d%. Dé constant on E.

Relations for d*) = V7 like d( ) — d(Q) and d(?’) = dg ), also
@1) +d@ 4+ dB) = d?Y then enable to proof the estimate /
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/Other hierarchical decompositions

e linear-linear FE: for symmetric triangulation v — 1

e quadratic-linear FE:

S2) = %S“) — %AS) gives 5 = %7%. Thus v = v — 1.

e bilinear-bilinear FE (Pultarova 2004) 72 < % for orthotropic

K Laplacian. Moreover, 2 = % in the isotropic case.
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Kuhn’s division of

cube into 6 tetrahedra

N

Hierarchical decomposition in 3D

********

into m

m = 3 — m> cubes

each cube — 6 tetrahedra

—> decomposition of a big tetrahedron
smaler tetrahedra
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/CBS in 3D

o Junk, Maitre 1999: 3D isotropic elasticity

e Achchab, Azelsson, et al. 2000: v = /9/10 for 3D, isotrop. elasticity

. R. Blaheta ( NLAA 2003)

e m fold refinement, m <5 (25 T)
e anisotropic Laplacian
e general elasticity !

e arbitrary element shape

2
< 4/1—
7_\/ m* + m?
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/Diagonal approximation to Aq; block

ou O
fQ Zk@&&, &de :

Consider orthotropic form a (u,v)
over ¢Ff € V,

All ~ <A11£17, £E> = a (Z ZBZ¢Z y Z ZEZ¢7]J€) Z ce
D1 = diag Aq1, (D11, x) = Zx?a (gbf,gbf) > ... over gbf C Vh+

and rectangular triangular elements. Local investigation:

ap (v,v) = ky [21}% + 2 (v — 02)2]

= D> >

VlE — Zspan {9752} + k2 [21}% + 2 (Ul — ”03)2}

dp(v,v) = Y viag (of,¢f)
:2(/€1—|—k2> (’U%—FU%—I—U%) ﬁ

\\ |
T1 o T2
!
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ﬁl‘he case of anisotropy \

ap (v,v) > min (k1, k2) (’U% + 03 + 03 + (v1 — v2)” + 03 + (01 — 2}3)2) h2

h2
, A _ min (ki, k
> min (kq, ko) (v% + V3 + ’U?Q)) 3 > 5 (kl( i k22)> dp (v,v)

Remedy: if ki > ko then Vig = span {¢1, ¢2} + span {¢3}

AN
. d(v,v) =k {2 (v1 — v2)” + 2’032,} 2
T m 2 2 20 O
S + ko |205 + 207 + 203 3 isotropy
R 1 -
I N S ap (v,v) > 51161 [27)32) +2 (v — ,02)2} =
SRER: 1 A
TR R N R 2
T —I—§k2 [2@%+2v§+2(vl—vg) }ﬁ
I S R 1
\‘ T > éd(v,v) (robust estimate)

/
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/Robust block tridiagonal preconditioner

Axelsson, Padiy, 1999 macroelement construction:

Alnp= | o o o | Biigp= o o©

e O o Sym [
A ) only one of o can be nonzero !
1 14+4/7/15 .
cond (Bll’EAll,E) S 1_\/7/75 = 5.31

Construction of preconditioner:

N
e analyzing of strong couplings
YAS 5 i > block tridiagonal preconditioner

e reordering unknowns

3D - block tridiagonal preconditioner works for rectangular meshes and
\orthotropy k1 > ko ~ k3 not for k1 ~ ko > k3.

/
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/Optimal multi-level preconditioners \

o Solve Aqq:

— Aj1~ diag(Ai1) for isotropic Laplacian

— Aj1~ block3diag(A;1) for anisotropic Laplacian in 2D
e Solve Ass:

— few Chebyshev or GCG iterations with the same ML preconditioner

If everything is well balanced, we can get optimal method !

Axelsson 1981, Axelsson, Gustafsson 1983, Axelsson, Vassilevski 1989,
1990, 1994, ...

Further development - robustness: in 2D we can get optimal method,

which is robust w.r.t. anisotropy

k&xelsson)Padiy 1999, Axelsson 2002 /
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/Greneral multi-level solvers

Solve the problem: Au=b with CG or GPCG|m| method

Multilevel preconditioner

e Solve Aqq:

— Aqpi~ilu(Aq)

— Aj1~ milu(Aq;)

— inner CG with preconditioner diag(Ai1), ilu(A11), milu(Aq1) ete
e Solve Ass:

— inner CG or GPCG iterations with the same ML preconditioner

Notes: MILU or MIC(0) is a good Aj; solver, for corresponding theory
see Notay 1998. The use of inner CG for both Ajjand Asy requires
\stabilization by GPCG in the outer iterations. /
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/Implementation issues \
Preparatory phase: T — To— — Tpy,
refine triangulation AL o oA2) — s Alm)
& assembly matrices. ]1(3) . N ]1("2%)

| If the initial triangulation is distributed among p processors = parallel

work on refinement & assembling = matrices arise in a distributed form.

Solution phase: for level £ =2,.... m
% implement CG iteration with || matrix - vector multiplication

% implement ML preconditioner with main operations

o different appsolve(A;;) some of them are highly

parallelizable, e. g. diagonal, inner iterations,

e appsolve(Ass) by inner iterations is again parallelizable,

if k=2 directsolve(As2) is less parallelizable.
Q/Iore discussion e. g. Neytcheva 1995, Douglas, Haase, Langer: Tutorial 2003 /
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/N umerical experiments 1 (B,) \

Model problem: € = (0,1) x (0,1), f = f(x, y) =1+ 2x + 3y

—div(gradu) = f in Q,
u = on I'p = 0N}

Test 1: Additive preconditioner, ¢ = 107°. Left: level, ref.,# dof, inner
acc., maxit, A=addit.

1 2 4 25 31 25 25

2 2 9 6 2 A 57 57 ob 53

3 2 25 6 2 A 104 109 108 107

4 2 81 6 2 A

5 2 289 6 2 A Above: numbers of iterations
6 1089 6 2 A A11 - exact, diag, cholinc, mic(0)

\ A22(row) - exact, inner CG, V cycle/
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—div(gradu) =

u =

inner acc., maxit, M=multiplicative.

1 2 4

2 2 9 6 2 M
3 2 26 6 2 M
4 2 81 6 2 M
5 2 289 6 2 M
6 1089 6 2 M

/N umerical experiments 2 (Bj;) \

Model problem: € = (0,1) x (0,1), f = f(x, y) =1+ 2x + 3y

Test 2: Multiplicative preconditioner, e = 107°. Left: level, ref.,#dof,

f in €,
on FD:6’Q

7 74 22 12
8 439 38 13
12 57 21 20

Above: numbers of iterations

A11 - exact, diag, cholinc, mic(0)

A22(row) - exact, inner CG, V cycle/
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/Algebraic hierarchy: aggregation/agglomeration \

e standard AMLI uses geometric hierarchy of nested FE grids,

which has some disadvantages

e using hierarchy of problems created algebraically (as in AMG) leads
to another AMLI variants

e AMLI with hierarchy of problems created by aggregation was
introduced in Notay NLAA 2002, 2005 with adaptive aggregation
procedure, rescaling aggregated matrices and MIC(0) solver for the

pivot block
e AMLI with hierarchy of problems created by agglomeration of finite

elements and using local Schur complements was introduced in Kraus
IMET 2004, NLAA 2005

e next we show AMLI - aggregation method with regular aggregation on

\ regular grids /
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/AM LI with aggregation (algebraic hierarchy)

SR
V" ‘
ey

SRR O K
mhﬁnﬁnﬁhﬁy‘n§A
NV varit -V

RO A SR

AMLI uses a space decomposition and HB. This can be done also via

aggregation of nodes/DOF’s. Let us select one node (DOF block) in each

aggregation as a C-node (o) and let the remaining nodes be F-nodes.

i 0 F I>1 Boolean, one
¢7JHB:ZJZR¢?7 J:(‘]ij): ; :
k Io1 I C unity per column

-

Ifi € Gjis a_C—node, then gbf]B = ZkeGj gbff

~

/
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4 N

AMLI-aggregation on regular grids

e All the same as for

geometric hierarchy

e local CBS analysis

a(u,v) = |, (Dgrad(u), grad(v)) de = 35 [, (Dgrad(u), grad(v)) dz

a(u, v) => pap(u, v), alu, u) => gpap(u, u), a(v, v) => pag(v, v)

N /
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CBS constant for decomposition by aggregation

Vi=Vo® V!, a(u,v)=>p ag(ug, vg), E macroelements:

\

- COS  sIn 1 COS —sIn
—siny cosy 10% Sin  COS
k= 0 1 2 3 4 5! 6
0° | .8966 | .9080 | .9123 | .9128 | .9129 | .9129 | .9129
15° || .8966 | .9210 | .9710 | .9961 | .9996 | 1.000 | 1.000
30° || .8966 | .9391 | .9879 | .9997 | .9999 | 1.000 | 1.000
45° || .8966 | .9453 | .9907 | .9990 | .9999 | 1.000 | 1.000
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c

V=V, ® VT,

a(u,v) — ZE ap (uE7 UE)?

E macroelements:

|

BS constant for aggregation - anisotropy

k= 0 1 2 3 4 3 6
0° 8966 | .9080 | .9123 | .9128 | .9129 | .9129 | .9129
aniso || .9013 .8660 .8660 .8660
90° 8966 | .9080 | .9123 | .9128 | .9129 | .9129 | .9129
aniso || .9013 9255 9258 9258

\
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Q=(0,1)x(0,1), f = f(z,y) =1+ 20 +3y 1
—div(gradu) = f in €, 2

U = on I'p = 0N 3

4

5

Right: level, coarsening, #dof, inner acc.,

max. number of inner it., A/M

Test 3: Left: Additive preconditioner, ¢ = 1079.

21 30 23 23 11
63 61 68 66 15
146 173 154 155 38

GQQ(I‘OW) - exact, inner CG, V cycle

/N umerical experiments 3 (B4, By)

2
2
2
2

Right: Multiplicative preconditioner, ¢ = 107°.
126
472
112

Above: numbers of iterations. Al1(col) - exact, diag, cholinc, mic(0).

2500 6 2 A
676 6 2 A
196 6 2 A

64 6 2 A
25

16 13
25 18
52 51

/
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/N umerical experiments 4 \

Outer iterations by CG by default. Otherwise GPCG|m].
Ass system solved by 2 CG iterations with multiplicative hierarchical
preconditioner, A system is solved by different methods.

Overal numbers of outer iterations:

15 for A system solved exactly,

472 for Ay ~ diag(Aq1),

25 for Aj; ~ cholinc(A11). Reduces to 23 iterations for GPCGJ1].
18 for A;; ~ micO(A11). Reduces to 17 iterations for GPCGJ1].

22 for Ai; system solved by inner CG with diagonal preconditioner and
GPCG]/1]|. For outer CG does not converges!

15 for Aj; system solved by inner CG with cholinc and GPCGJ1],
Q5 for Aj; system solved by inner CG with mic(0) and GPCG]J1|. /
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HD with aggregation

:-) fully algebraical approach,

:-) regular aggregation on regular grid gives the same A;; as HB
approach, Ags with the same stencil, on uniform grid differing from

Ap by a scaling factor
:-( CBS constant is bigger and depending on anisotropy
Possible improvements
1. problem dependent aggregation,

2. algebraical improvement

N
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/N onconforming FE

BVP: find ueV(Q): a(u,v)=0bw) YveV(Q)
a(u,v) = [o(DVu,Vu)dz, D...2x2 SPD
V={veH (Q),v(x)=00nTo}
BN Crouzeix - Raviart FE:
() — triangulation 7,
/ T, — M;, - set of mid points

[v] - jump of v on edges of T

Uy, =1{veLy(Q):v|re PLVYT €Ty, [v](z) =0 Vz € M}
vh:{veﬁh: v(xr) =0 VCEEMhﬂFO},

ap (u,v) = Z /T<DVU,VU> dx

\ TeTy,
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/N onconforming FE \
Nonconforming FEM:
find up, € Vi, (Q) : ap (up,vn) =b(vy)  Yop € Vi (Q)

ue€ H*(Q) = ||lu—up| < chlul,

Advantages: locking free elements, sparsity and regularity of the pattern of

FE matrices

Hierarchic construction:

‘7}[ 7,@ ‘7h! ’ 1
Vg C Vh

\ basis functions ¢y ... ¢g /
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/Hierarchic preconditioners for CR matrices

FR construction: let denote I - inner nodes {1, 2,3}, S - side nodes
7 -~ -
NBoi...09 = HB ¢1...¢9 Ay =JApJT

~ ~ B = Ags — Agr A7 Ars
Arr | Arg Aifg o1,..

Ap=| Agy | Ags  Ags | ¢4 — 05, 5 B Bio
A%I A%{S’ A%QS ¢4 T ¢5"' B Bgl BQQ

DA construction
J

~

NB ¢y...09 = HB ¢1...09 A, =JAJT
Ay An |70
A, — b1 — P5, -

\ A Agy | da+ ba+ ¢s, .. — Agy = 4Ag

\

/
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/AMLI for nonconforming CR FEM \

vrr: (Biawa, 1) < yrr\/(Bii1, 21)v/ (Baaxa, 22)

YDA - <Z12y2,y1> < 7DA\/<1/4V1119/1,3J1>\/<Av22y2ay2>

Theorem (Margenov, Neytcheva, RB, NLAA 2004): Let us consider
nested triangular grids, with coarse triangles consisting from 4 smaller

ones. Assume that the coefficient matriz D has no jumps within the coarse

triangles. Then
YFR 1’ YDA > 1

for any element size and shape and general anisotropic Laplacian.

Theorem (Margenov, Neytcheva, RB, NLAA 2005): There is block

tridiagonal optimal robust solver for the pivot block and it is possible to

\construct robust optimal AMLI preconditioners for CR FEM systems. /
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4 N

Conclusions

We talk about AMLI type hierarchical preconditioners

e main ingredients - decomposition, local block solver, global block

solver - polynomial stabilization

e construction - multiplicative/addititive, geometric/algebraic hierarchy,

global /local refinement
e various local block solvers
e implementation including parallelization

e robustness




SNA ’05 (15th January 2006) 42

/References \

|1] R. Blaheta, O. Axelsson, Two simple derivations of universal bounds for the
C.B.S. inequality constant, KUN Report 2001, Appl. Math. 2004.

|2] R. Blaheta, Nested tetrahedral grids and strengthened CBS inequality,
NLAA 2003

|3] R. Blaheta, M. Neytcheva, S. Margenov: Uniform estimate of the constant in
the strengthened CBS inequality for anisotropic non-conforming FEM
systems , Numerical Linear Algebra with Applications 11(2004), issue 4,
309-326

|4] R. Blaheta, M. Neytcheva, S. Margenov, Robust optimal multilevel
preconditioners for nonconforming FE systems. Numerical Linear Algebra
with Applications, 12(2005), pp. 495-514

|5] R. Blaheta, S. Margenov, M. Neytcheva, Aggregation-based multilevel
preconditioning of non-conforming FEM elasticity problems, PARA 2004,

\ LNCS 3732, Springer 2005, pp. 847-856 /




