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Abstract

THIS poster investigates the appropriateness of several
popular modern direct solvers to solve the linear sys-

tems arising in the simplex method. It presents and com-
ments the results of numerical experiments with different
software packages for a large number of benchmark LP’s.

1. Linear Systems in the Simplex Method

LET A ∈ IRm×n with m < n, l′, u′, c ∈ IRn and l′′, u′′ ∈ IRm.
The linear programming problem (LP) consists of finding

x ∈ IRn that solves
min cTx

subject to l′ ≤ x ≤ u′

l′′ ≤ Ax ≤ u′′.

Consider index sets B,N with B∪N = {1, . . . ,m}, B∩N =
∅, |B| = m (and |N | = n − m) and A· B nonsingular. Then
A· B is called basis matrix and an example of a simplex al-
gorithm is

The entering simplex algorithm

1. Pricing: If the current solution cannot be improved, termi-
nate. Else: choose an entering index q ∈ N of a column
that should enter the basis in order to improve the cur-
rent solution. Depending on the pricing strategy, a linear
system with AT

·B must be solved.
2. Compute the primal search direction ∆f from A·B∆f =

A· q.
3. Ratio test: Compute the primal step length and select a

leaving index p ∈ B to leave the basis.
4. Compute the pricing search direction ∆g from AT

·B∆h =

ep and the computation of ∆g = AT∆h.
5. Update: B = B \ {p} ∪ {q}, N = N \ {q} ∪ {p}

In all implementations of the simplex method each of the in-
dividual vertex traversals requires the solution of two linear
systems. Depending on the strategy chosen, the solution of
a third or even fourth system per iteration might be neces-
sary. The solution of these systems account for the major
slice of computation time: 60-90%.

• In every iteration, one column of the basis matrix is re-
placed with a nonbasic column from A.

• Matrices are non-symmetric, indefinite and seem to lack
any structure.

• The vast majority is sparse, that is, most linear program-
ming problems have about 10 to 20 nonzeros per column

• The basis matrix typically contains an important number
of unit vectors (25-50%); especially during the first itera-
tions, unit vectors can make a very large part of the basis.

However, the basis matrices do have the following structure:
There exist permutation matrices P,Q such, that

PA· B Q =





U0 ∗ ∗
0 L0 0
0 ∗ N



 , (1)

where L0 is lower and U0 is upper triangular. For most prob-
lems the dimension of the nucleus N is much smaller than
the dimension of A· B. For example, for most very large
LP’s we consider, the average dimension of the nucleus N

is only one or two percent of the dimension of A· B.
Some modern direct solver packages fail to recognize this
structure and produce a fill-in of several times the fill-in
needed with the above permutations. In fact, with the above
permutations fill-in can arise only in the nucleus. If we mea-
sure, for given L and U factors, the fill-in by

nnz(L − I) + nnz(U)

nnz(A· B)
, (2)

then for our very large LP’s the average fill-in has a value
of about 1.01 − 1.02, that is nearly optimal fill. In the follow-
ing section we compare, for a representative set of direct
solvers, the fill-in produced in the nucleus only (hence in
(2), A· B is replaced by N .

2. Numerical Experiments

The LP’s we used come from four sources:

1. The NETLIB set of real-world LP’s (94 LP’s). Although
this publicly available test set dates back many years and
most of the problems are solved within a fraction of a sec-
ond, we consider them to be interesting for our purpose
of comparing fill-in in the factors.

2. The MIPLIB 2003 test set of mixed-integer linear pro-
grams (60 LP’s). In order to mimic a typical root re-
laxation for branch-and-bound based MIP algorithms,
we solve the resulting LP after applying CPLEX1 MIP-
presolve and relaxing integrality constraints.

3. The LP’s from the Mittelmann benchmark of free LP
solvers that do not come from source 1 or 2 (35 LP’s).

4. Large scale LP’s, mostly with the dimension of B exceed-
ing 5 · 105, provided by Thorsten Koch of ZIB2 (11 LP’s).

In total, our test set consists of 200 LP’s, represent-
ing a wide range of different application areas, so
that the numerical results we present are tightly cou-
pled with the behaviour encountered in practice.
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Figure 1: Ranges of the nuclei sizes of the LP’s we tested.
The LP’s are sorted according to nucleus size. The lower
graph indicates the dimension of the corresponding LP.
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Figure 2: Distribution of the LP’s by their average fill-in (2)
with Markowitz pivoting [1] in the nucleus at iterations where
the basis matrix was refactorized.

The distributions of the LP’s by their average fill-in
(2) in the nucleus with respectively, PARDISO 3.13,

WSMP 6.9.254 and UMFPACK 5.0.15, are:
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3. Conclusion

AMAZINGLY , the oldest strategy, Markowitz pivoting,
outperforms the other solvers. We briefly describe it. In

an LU decomposition algorithm we have to choose a pivot
element from our active submatrix which we call B. At some
iteration, let ri be the number of nonzeros in row i and cj the
number of nonzeros in column j. Clearly, if bij was chosen
as pivot element, the Markowitz number

mij = (ri − 1)(cj − 1)

is an upper bound for the number of fill-in elements.
Among the elements that meet a certain stability thresh-
old, Markowitz pivoting chooses the element with small-
est Markowitz number. Markowitz pivoting (1) per defini-
tion recognizes the structure (1); (2) is based on a simple
heuristic that copes with the unstructured kernel.
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