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then for our very large LP’s the average fill-in has a value WSMP 6.9.25%4 and UMFPACK 5.0.1°, are:
Abstract of about 1.01 — 1.02, that is nearly optimal fill. In the follow-
. . . Ing section we compare, for a representative set of direct
HIS poster investigates the appropriateness of several - . . o T T
. . solvers, the fill-in produced in the nucleus only (hence In
popular modern direct solvers to solve the linear sys- .
(2), A. g is replaced by N.

tems arising in the simplex method. It presents and com-
ments the results of numerical experiments with different

software packages for a large number of benchmark LP’s. ‘ 2. Numerical Experiments ||
‘ 1. Linear Systems in the Simplex Method I The LP’s we used come from four sources:
1. The NETLIB set of real-world LP’s (94 LP’s). Although

ET Ac R"™"withm < n,l',v,ce R"and ", v" € R™.
The linear programming problem (LP) consists of finding
x € R" that solves

No. of LP b

this publicly available test set dates back many years and
most of the problems are solved within a fraction of a sec-

o ond, we consider them to be interesting for our purpose 0 02505075 1 12515 115 2 22620215 3 525 35375 4 4% 45 475 5 i
min ¢ of comparing fill-in in the factors. cy distibution - WSMP
subjectto ! < x < W/ 2. The MIPLIB 2003 test set of mixed-integer linear pro- i

I I grams (60 LP’s). In order to mimic a typical root re-
[ < Ax < u . .
- - ' laxation for branch-and-bound based MIP algorithms,

100

Consider index sets B, N with BUN = {1,...,m}, BNN = we solve the resulting LP after applying CPLEX1 MIP-
0, |B| =m (and |N| = n —m) and A. g nonsingular. Then presolve and relaxing integrality constraints. :
A. p Is called basis matrix and an example of a simplex al- 3. The LP’s from the Mittelmann benchmark of free LP
gorithm is solvers that do not come from source 1 or 2 (35 LP’s).

4. Large scale LP’s, mostly with the dimension of B exceed-
ing 5 - 10°, provided by Thorsten Koch of ZIBZ (11 LP’s).

In total, our test set consists of 200 LP’s, represent-
ing a wide range of different application areas, so o
that the numerlcal reSUItS We present are tlghtly Cou_ 0O 02505075 1 12515 1.75 Zéi.nZSSO%.rSanZngofaCNS.ZS 35375 4 42545475 5 Inf
pled with the behaviour encountered Iin practice.
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The entering simplex algorithm

1. Pricing: If the current solution cannot be improved, termi-
nate. Else: choose an entering index ¢ € N of a column
that should enter the basis in order to improve the cur-
rent solution. Depending on the pricing strategy, a linear
system with A, must be solved.

2. Compute the primal search direction Af from A. gAf =
A. . 100 L —
q

3. Ratio test. Compute the primal step length and select a
leaving index p € B to leave the basis.

4. Compute the pricing search direction Ag from ATBAh =
e, and the computation of Ag = AT AR,

5.Update: B =B\ {p} U{q}, N = N\{q} U{p;
In all implementations of the simplex method each of the in-
dividual vertex traversals requires the solution of two linear
systems. Depending on the strategy chosen, the solution of )
a third or even fourth system per iteration might be neces-
sary. The solution of these systems account for the major
slice of computation time: 60-90%.

e In every iteration, one column of the basis matrix Is re-
placed with a nonbasic column from A. s x SL I
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e Matrices are non-symmetric, indefinite and seem to lack

any structure. ‘ 3. Conclusion I

e The vast majority Is sparse, that is, most linear program-

ming problems have about 10 to 20 nonzeros per column Figure 1: Ranges of the nuclei sizes of the LP’s we tested. MAZINGLY', the oldest strategy, Markowitz pivoting,
outperforms the other solvers. We briefly describe it. In

an LU decomposition algorithm we have to choose a pivot
element from our active submatrix which we call B. At some
iteration, let r; be the number of nonzeros in row : and ¢; the
A e LA O number of nonzeros in column j. Clearly, if b;; was chosen
as pivot element, the Markowitz number

e The basis matrix typically contains an important number The LP’s are sorted according to nucleus size. The lower
of unit vectors (25-50%); especially during the first itera- graph indicates the dimension of the corresponding LP.
tions, unit vectors can make a very large part of the basis.

However, the basis matrices do have the following structure:
There exist permutation matrices P, () such, that

UV« «
PAgQ=1010 |, (1) mgj = (r; — 1)(¢j — 1)
0 *x N

IS an upper bound for the number of fill-in elements.

Among the elements that meet a certain stability thresh-

old, Markowitz pivoting chooses the element with small-

est Markowitz number. Markowitz pivoting (1) per defini-

tion recognizes the structure (1); (2) is based on a simple
I heuristic that copes with the unstructured kernel.
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Bins of ranges of relative fill-in

where L' is lower and U is upper triangular. For most prob-
lems the dimension of the nucleus N is much smaller than
the dimension of A. 5. For example, for most very large
LP’s we consider, the average dimension of the nucleus N
IS only one or two percent of the dimension of A. .

Some modern direct solver packages fail to recognize this
structure and produce a fill-in of several times the fill-in
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