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1. Classification tasks: Introduction

Classification task:

● Assign a given sample, based on its properties, to one of the
pre-defined classes

● Different classifiers utilize different decision rules, e.g. centroid based,
nearest neighborhood and support vector machines methods

● Decision rules are derived from information gained from training
samples, ’learning process’
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1. Classification tasks: Introduction

Examples of modern applications:

Text document classification - information retrieval systems: Documents
are represented by p-dimensional vectors, every variable corresponds to a
keyword in the text, its value indicates the number of times the keyword
occurs in the document.

Protein fold prediction: Protein strings are represented by p-dimensional
vectors, every variable indicates the number of times a pair of amino-acids
occurs in the string.

Biomedical signal processing - (our software is currently being integrated
in the BioSig open source software library (TU Graz))
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1. Classification tasks: Introduction

In applications like text document classification or protein fold class
prediction, the samples may contain a very large number of variables.

To enhance efficiency one frequently performs a preprocessing step
known as dimension reduction of the space of variables.

One of the simplest and most popular methods that incorporate dimension
reduction is Fisher’s Linear Discriminant Analysis (FLDA).
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2. Fisher’s Linear Discriminant Analysis (FLDA)

FLDA idea: project the variables on a space of small dimension such that
class information is maximally preserved.

This is achieved with between-class- and within-class-covariance: With

● n: Number of training samples
● p: Number of variables
● xi ∈ R

p: The ith sample
● x̄ ∈ R

p: The grand mean of all samples, x̄ = 1

n

∑n

i=1
xi

the total covariance matrix T ∈ R
p×p is defined as

T =
1

n − 1

n
∑

i=1

(xi − x̄)(xi − x̄)T .
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2. Fisher’s Linear Discriminant Analysis (FLDA)

With
● g: The number of classes
● nj : The number of samples in class j

● Nj : The set of indices i for which xi is in class j

● x̄j ∈ R
p: The mean vector in class j, x̄j = 1

nj

∑

i∈Nj
xi

the between-class-covariance matrix B ∈ R
p×p is defined as

B =
1

g − 1

g
∑

j=1

nj(x̄j − x̄)(x̄j − x̄)T

and the within-class-covariance matrix W ∈ R
p×p is defined as

W =
1

n − g

g
∑

j=1

∑

i∈Nj

(xi − x̄j)(xi − x̄j)
T .
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2. Fisher’s Linear Discriminant Analysis (FLDA)

Clearly, T, B and W are symmetric positive semi-definite.
One can easily prove that

(n − 1)T = (g − 1)B + (n − g)W.

For a sample v ∈ R
p we call:

● vT Tv: Total covariance
● vT Bv: Between class covariance
● vT Wv: Within class covariance

FLDA seeks transformation vectors ci ∈ R
p, i < g, such that the

transformed samples
(c1, . . . , ci)

T xj

have maximal between-class-covariance and minimal
within-class-covariance. This leads to Fisher’s criterion:
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2. Fisher’s Linear Discriminant Analysis (FLDA)

Fisher’s criterion: A transformation vector ci must satisfy

cT
i Bci

cT
i Wci

= max
c∈Rp, c 6=0

cT Bc

cT Wc
.

The criterion is formulated for nonsingular W. Then it is equivalent to
finding the largest eigenpairs of the generalized eigenproblem

(B − λW)c = 0, (1)

which can be transformed to a standard eigenproblem, e.g.

(W−1B − λI)c = 0. (2)

The FLDA-transformation space of dimension i, i < g, is spanned by the
eigenvectors corresponding to the i largest eigenvalues.
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3. Fisher’s criterion for the p ≫ n problem

In many modern applications (text document classification, protein fold
prediction), the number of variables is often so high that one cannot afford
to work with the same number of samples (the so-called small sample
size problem, also ’p ≫ n problem’).

As a sum of n rank one matrices,

W =
1

n − g

g
∑

j=1

∑

i∈Nj

(xi − x̄j)(xi − x̄j)
T ∈ R

p×p

has rank(W) ≤ n.

When p > n, then W is singular.
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3. Fisher’s criterion for the p ≫ n problem

This makes Fisher’s maximization problem

max
c∈Rp, c 6=0

cT Bc

cT Wc

challenging:

● Coping with a generalized eigenproblem (B − λW)c = 0 where B and W
have a common null space. Computing the Kronecker canonical form
with GUPTRI?

● Meaning of Fisher’s criterion ?

We first present five methods used in statistics for the p ≫ n case. In the
next section we address their implementation.
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3. Fisher’s criterion for the p ≫ n problem

Some methods solve a modified generalized eigenproblem

(B − λW̃)c = 0,

with a nonsingular matrix satisfying in some sense

W̃ ≈ W.

1. Perturbation methods compute the SVD of W and modify the singular
values in order to make them all nonzero ( [Hong and Yang - 1991],
[Cheng, Zhuang and Yang - 1992], [Krzanowski et al. - 1995]). For
instance if

W = Q diag(s1, . . . , sp)Q
T ,

and sr+1, . . . , sp = 0, then for some small ε,

W̃ = Q diag(s1, . . . , sr, sr+1 + ε, sp + ε)QT .

Perturbation methods compute an expensive eigenproblem of dimension
p. They also ask for determination of suitable perturbation parameters.
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3. Fisher’s criterion for the p ≫ n problem

2. Moore-Penrose methods compute the truncated SVD of W ([Hong and
Yang - 1991], [Cheng, Zhuang and Yang - 1992], [Krzanowski et al. -
1995], R-environment):

W̃ = Qr diag(s1, . . . , sr)Q
T
r ,

where Qr contains the first r singular vectors.

Transformation to a standard eigenproblem is achieved through
multiplication with the Moore-Penrose pseudo-inverse of W̃.

In comparison with perturbation methods, Moore-Penrose methods avoid
determination of parameters (except the truncation parameter) and need
only the first r eigenvectors of W instead of all p. The Moore-Penrose
method is implemented in R-environment by the lda-function.
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3. Fisher’s criterion for the p ≫ n problem

In perturbation and Moore-Penrose methods one solves a modified
maximization problem corresponding to W̃ instead of W. Deterioration
from the original problem may be strong (see [DT, Schlesinger - 2006 ?])

Others methods address Fisher’s criterion directly [Cheng, Liao, Ko, Lin
and Yu - 2000], [Howland, Park et al. - 2003, 2004, 2005]:
They argue that

cT Bc

cT Wc
(3)

is maximized for c ∈ null(W). Hence the best transformation vectors are to
be chosen from null(W). Indeed, a vector c from null(W) trivially has
minimal within-class covariance

cT Wc = 0.
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3. Fisher’s criterion for the p ≫ n problem

3. The null space method ([Krzanowski et al. - 1995], [Cheng, Liao, Ko,
Lin and Yu - 2000]) simply solves the maximization problem

max
c∈Rp, Wc=0

cT Bc.

The null space of W has dimension at least p − n, only little less than p.
Hence finding the null space is expensive and so is solving the
eigenproblem of dimension at least p − n.

4. The LDA/GSVD method [Howland, Jeon, Park - 2003] computes

B = C−T

(

Sα 0

0 0

)

C−1, W = C−T

(

Sβ 0

0 0

)

C−1,

for a nonsingular C ∈ R
p×p and diagonal matrices with nonnegative

entries Sα = diag(α1, . . . , αt) and Sβ = diag(β1, . . . , βt) such that
Sα + Sβ = It and t ≤ n + g.
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3. Fisher’s criterion for the p ≫ n problem

This implies the first t columns ci of C are eigenvectors for (1) and satisfy

βiBci = αiWci.

The LDA/GSVD method selects as transformation vectors

● first the ci with βi = 0. They lie in the null space of W.
● if necessary further ci with maximal ratio

αi/βi =
cT
i Bci

cT
i Wci

.

The LDA/GSVD method can be implemented such that computational
costs are of order O(pn2) + O(n3).
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3. Fisher’s criterion for the p ≫ n problem

5. The ’closest to original criterion’ method (see, e.g. [Yang, Yang - 2003])
combines the transformation criteria of the two previous methods as
follows: Choose transformation vectors ci satisfying

max
c∈Rp, Wc=0

cT Bc, (4)

with proceeding to the original criterion

max
c∈Rp, Wc 6=0

cT Bc

cT Wc
(5)

as soon as the maximum in (4) becomes zero.
This criterion is closest to Fisher’s original criterion for the regular case.
Experiments seem to indicate that optimal linear discriminant analysis
leads to the most powerful classification.

At first sight, it seems this method asks for computation of all eigenvectors
W, i.e. a p-dimensional eigenproblem.



J. Duintjer Tebbens, P. Schlesinger 18

4. Efficient implementation

All mentioned methods must solve full or partial eigenproblems of
dimension p. In practice often p is so large this becomes unfeasible (e.g.
p > 10.000 is very common).

We now list and combine as many advantageous implementation tricks
we know of to circumvent too large computations. Some are already used
in some methods but can be applied to others, some have been used in
other statistical tasks and some are new.

1. Factorization of the covariance matrices
For instance T can be written as a product of rectangular matrices:

T =
1

n − 1

n
∑

i=1

(xi − x̄)(xi − x̄)T =
1

n − 1
(X − x̄1n)(X − x̄1n)T .

Here, X ∈ R
p×n is the sample matrix whose ith column contains the ith

sample and 1n = (1, 1, . . . , 1).
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4. Efficient implementation

Similarly, B and W can be written as products of rectangular matrices
RB , RW ∈ R

p×n

B = RBRT
B , W = RW RT

W .

Advantages are:

● We need to store only X − x̄1n, RB , RW ∈ R
p×n instead of

T, B, W ∈ R
p×p

● Multiplication with a covariance matrix may be split into 2 cheaper
multiplications with its rectangular factors.

This technique is already used in the LDA/GSVD method and in the
R-environment implementation of the Moore-Penrose method. The
technique can (and should) be used in all other methods, too.
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4. Efficient implementation

2. Elimination of the common null space of B and W

This strategy is justified by the fact that vectors c in the common null
space do not contribute to discrimination because cT Bc = 0 = cT Wc.

As rank(B) ≤ g and rank(W) ≤ n, the complement of the common null
space is of dimension n + g ≪ p at most, hence the gain is considerable.

Elimination can be done very efficiently with the following 2 lemma’s:

Lemma 1: The common null space of B and W is the null space of T.
P r o o f: Follows from (n − 1)T = (g − 1)B + (n − g)W. 2

Hence elimination of the common null space equals restriction to the
eigenspace of T corresponding to nonzero eigenvalues. This is nothing
but performing a 100% Principal Components Analysis. It is best done by
factorization of T into rectangular factors and the following lemma:
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4. Efficient implementation

Lemma 2: Let Z ∈ R
n×p with n < p, let the diagonal matrix D1 contain

the nonzero eigenvalues of ZZT ∈ R
n×n and let the columns of V1 contain

the corresponding eigenvectors. Then the normalized eigenvectors for
nonzero eigenvalues of ZT Z ∈ R

p×p are given by the columns of

ZT V1D
−1/2

1
.

P r o o f : See [Johnson, Wichern - 1998]. 2

Hence we can extract eigenvectors of the p-dimensional matrix
T = (XT

− x̄1n

T )(X − 1nx̄T ) by forming the n-dimensional spectral
decomposition of (X − 1nx̄T )(XT

− x̄1n

T ) and multiplying the obtained
(scaled) eigenvectors with

(XT
− x̄1n

T ) ∈ R
p×n.
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4. Efficient implementation

Thus p-dimensional computations are restricted to this last multiplication
with (XT

− x̄1n

T ), which can exploit the fact x̄1n

T is rank one, and
possible sparsity of X.

Another important advantage of elimination of the common null space of B
and W is that it enhances stability of the generalized eigenproblem

(B − λW)c = 0.

Elimination of the common null space makes sense in the Moore-Penrose,
the LDA/GSVD and the ’closest to original criterion’ method. It is done
only in our implementation of the last method (and in case of PCA+LDA
strategies).
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4. Efficient implementation

3. Efficient computations in the complement of the common null space

We denote the projections of the matrices B, W and T onto the
complement of the common null space by B, W and T, respectively. To
solve the projected generalized eigenproblem

(B − λW)c = 0,

we propose to use the simple

Lemma 3: An eigenvector c for Yc = µ(Y + Z)c satisfies

Yc =
µ

1 − µ
Z c.

Hence with T = B + W, any eigenvector c with (B − µT)c = 0 is also an
eigenvector for

(B − λW)c = 0, λ =
µ

1 − µ
.
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4. Efficient implementation

We can as well solve
(B − µT)c = 0. (6)

if we select the eigenvectors correctly.

Two important advantages are:

● The matrix T, as the restriction of T to the complement of its own null
space, is non-singular. Hence, we can transform (6) to a standard
eigenproblem. With W this is in general not possible.

● In addition, as a simple computation shows, the matrix T is diagonal.

Interchanging W with T has been presented in the literature as a
modification of Fisher’s criterion (in fact it is not), ([Cheng, Zhuang, Yang -
1992], [Hong, Yang - 1991]).
But the implementational advantages appear only in the complement of
the common null space.
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4. Efficient implementation

4. Using sparse methods

We are looking for g − 1 ≪ p transformation vectors at most. In addition,
they correspond to leading eigenvalues.

Hence in all methods, the involved (generalized or standard)
eigenproblems are often best solved with a sparse method (Lanczos,
Arnoldi, etc...).

Unfortunately, in the literature on classification we didn’t find a word on the
usage of sparse methods.
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5. Experiments

We implemented all 5 methods from Section 3 with as many of the just
mentioned implementation strategies as possible:

● In the perturbation method („Perturb"): Factorization of covariance
matrices, sparse method, O(p2n) comp. costs

● In the Moore-Penrose method („MP"): Factorization of covariance
matrices, elimination of common null space, sparse method, O(pn2)
comp. costs

● In the null space method („Null space"): Factorization of covariance
matrices, sparse method, O(p2n) comp. costs

● In the LDA/GSVD method („GSVD"): Factorization of covariance
matrices, GSVD (original implementation), O(pn2) + O(n3) comp. costs

● In the ’closest to original criterion’ method („COC"): All implementation
strategies, O(pn2) + O(n3) comp. costs

All methods were implemented in MATLAB.
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5. Experiments

First a small example to compare all five methods:

Gene expression profile data: Investigation of DNA microarrays for
multiple cancer types diagnosis. It consists of 63 measurements of

p = 2 308 genes belonging to g = 4 groups.

We divided the objects by choosing randomly from every group one half
as training and one half as test set. This gave a training sample matrix of
dimension 32 × 2 308, i.e.

n = 32.

The individual methods satisfy Fisher’s criterion as follows:
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5. Experiments

Dimension trace(cT Bc)
Perturb. MP GSVD Nullspace COC

1 794 183 602 794 794

2 1 405 331 1 148 1 405 1 405

3 1 829 391 1 715 1 829 1 829

Dimension trace(cT Wc)
Perturb. MP GSVD Null space COC

1 0 15 0 0 0

2 0 32 0 0 0

3 0 43 0 0 0
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5. Experiments

Dimension Succesful classification rate
Perturb. MP GSVD Null space COC

1 74.2% 51.6% 51.6% 74.2% 74.2%

2 93.6% 77.4% 96.8% 93.6% 83.9%

3 96.8% 83.9% 96.8% 96.8% 96.8%

Timing (s)

Perturb. MP GSVD Null space COC

2.9 0.025 0.024 8.6 0.024
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5. Experiments

The second example is much larger:

The MEDLINE data studies the classification of medical documents into
g = 5 groups. After applying a preprocessing technique we obtain

p = 22 095 distinct terms as explanatory variables. As Perturb. and Null
space have storage costs of order O(p2) we were not able to apply them!

We use a training set and test set with the same number of examples
n = 1 250;

In this example the resulting sample matrix is sparse: The number of
non-zeroes of the 1 250 × 22 095 training sample matrix is nnz = 99 765.
Consequently,

● In MP: O(nnz n) + O(n3) comp. costs
● In GSVD: O(pn2) + O(n3) comp. costs
● In COC: O(nnzn) + O(n3) comp. costs
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5. Experiments

Dimension trace(cT Bc)
MP GSVD COC

1 0.58 0.53 0.74

2 0.66 0.91 0.91

3 0.70 1.08 1.08

4 0.78 1.12 1.12

Dimension trace(cT Wc)
MP GSVD COC

1 4.72e-06 0 0

2 1.07e-05 0 0

3 4.13e-04 4.72e-06 4.72e-06

4 7.61e-04 1.06e-05 1.06e-05
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5. Experiments

Dimension Succesful classification rate
MP GSVD COC

1 41.0% 31.9% 48.6%

2 50.2% 54.6% 55.0%

3 63.4% 74.6% 74.6%

4 86.7% 87.5% 87.5%

Timing (s)

MP GSVD COC COC, direct method

81 150.5 33 60.5
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6. Conclusions

FLDA-based classification in the p ≫ n case seems most powerful with
the ’closest to original criterion’ method.

The method can be implemented by combining a variety of attractive
strategies, enabling among others its application to problems with
high-dimensional sparse data matrices.

For more details see ,Improving Implementation of Linear Discriminant
Analysis for the Small Sample Size Problem’, DT, Schlesinger - 2006 ?,
submitted to CSDA.
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6. Conclusions

Thank you for your attention.

Supported by the project “Information Society” of the Academy of Sciences of the
Czech Republic under No. 1ET400300415 and the MSMT CR Project LC536.
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