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Motivation: scalable algorithms for PDE
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( ) 1
0 min ( )(QP)       Find : for ∈ Ωf Hu u

Discretization and multigrid or FETI
(Fedorenko 60’s, … , Farhat 90’s, …)

Elliptic problems
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  (1)  O⇒ Solvable in iterations



Our goal: develop tools for extending the 
results to constrained problems

Identify the active constraints for
free

Get rate of convergence independent of             
conditioning of constraints

Use only preconditioners that preserve bound 
constraints (e.g. lecture M. Domorádová, 
Thursday), not considered here

Challenges:



Equality constrained problems
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Goal: find approximate solution at O(1) iterations !!!
Note: we do not assume full row rank of B



Prolog: penalty method
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Penalty approximation of the Lagrange 
multipliers

( )

21 1( )
2 2

( ) ( )

T T

T

f

fρ

ρ

ρ

λ

= +

∇ =

x x Ax - b x Bx - c

x Ax - b + B Bx - c



Optimal estimate
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Non optimal but linear in     estimate
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Optimality of dual penalty for FETI1
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Augmented Lagrangian and gradient
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Augmented Lagrangians
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KKT conditions
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SMALE-Semimonotonic Augmented 
Lagrangians
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Basic relations for SMALE
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Optimality of SMALE

{ } { } { } 1

k

k

k

Let ,  and  be generated with   (0, ],

>0,  M>0 and  >0.
(i)  

(ii) SMALE generates   that satisfies

( ) b    and   b

 

(iii) SMALE with CG in inner loop generates   that sati

k k
i

k

Corol

x A

x

g x Bx

x

lary :

μ ρ α

β

ε ε

−∈

Γ

≤ ≤

k

sfies

( ) b    and   bk

Z.D. OMS (2005), COA

g x

 ( 0

Bx

2 07)

ε ε≤ ≤

2
min / ( )k Mρ β λ≤ A

at  (1) outer iterationsO

ρ

at (1) matrix-vector multiplicationsO



Convergence of Lagrange multipliers

(i)  Lagrange multipliers converge even for dependent constraints  

(ii) The convergence is linear for sufficiently large ρ



CG iterace – string system on Winkler 
support, multipoint constraints, cond=5 G 



Bound constrained problems
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Goal: find approximate solution at O(1) iterations !!!



Projected gradient
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Deleting indices from active set- proportioning
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Proportional iterations

Projection step: 
expansion of 
the active set

Feasible conjugate 
gradient step:
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MPRGP- Modified Proportioning with 
Reduced Gradient Projection
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Rate of convergence of MPRGP
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Optimality of MPRGP
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Finite termination
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CG iterace – string system on Winkler support,  
bound constraints, cond=5



Bound and equality constrained problems
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(QPBE )       Find:
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Goal: find approximate solution at O(1) iterations !!!
Note: we do not assume full row rank of D!!!



Augmented Lagrangian and projected 
gradient
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SMALBE-Semimonotonic augmented Lagrangians
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Basic relations for SMALBE
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Optimality of SMALBE
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(ii) SMALBE with MPRGP in inner loop generates   that
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CG iterations – string system on Winkler 
support,  bound and multipoint constraints, 

cond=5



Solution and numerical scalability of TFETI 
for n ranging from 50 to 2 130 048 
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Solution and numerical scalability of FETI 
2D semicoercive benchmark, 6 bodies

Subdomains dof Contact conditions It FETI-1 It FETI-DP

96 118098 565 103 82

384 466578 1125 129 90



Related work

1. Projectors introduced by Calamai, More, Toraldo
2. Efficiency of inexact working set strategy with 

preconditioning in face considered by O’Leary
3. Adaptive precision control introduced by 

Friedlander and Martinez
4. Basic algorithm for bound and equality constraints 

was introduced by Conn, Gould and Toint and 
used in LANCELOT

5. Precision control that we use introduced Hager, 
used by Z.D., Friedlander, Santos and Gomes



Conlusions
1. New algorithms for bound and equalityconstrained 

problems were introduced 
2. Qualitatively new results were proved
3. Theoretical results demonstrated by numerical 

experiments
4. The results were applied to develop scalable 

algorithms for elliptic boundary variational 
inequalities

5. Current reserach: preconditioning with improved 
rate of convergence (Thursday – Domorádová)
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