GMRES Acceleration Analysis for a Convection Diffusion Model Problem

Jurjen Duintjer Tebbens jointly with Zdeněk Strakoš

Institute of Computer Science Academy of Sciences of the Czech Republic email: tebbens@cs.cas.cz

Annual GAMM meeting 2005, Lëtzebuerg, April 1, 2005

Outline

- 1. The convection diffusion model problem
- 2. Analysis of acceleration of GMRES convergence speed
- 3. Numerical examples

1. The convection diffusion model problem

We consider a model problem that has been studied by many authors, e.g. [Fischer, Ramage, Sylvester, Wathen - 1999], [Ernst - 2000], [Elman, Ramage - 2001, 2002], [Liesen, Strakoš - 2004]:

$$-\nu \nabla^2 u + w \cdot \nabla u = 0 \quad \text{in} \quad \Omega = (0, 1) \times (0, 1),$$
$$u = g \quad \text{on} \quad \partial \Omega,$$

- ν : scalar diffusion coefficient
- $w = [0, 1]^T$: convective velocity field
- g : discontinuous inflow boundary conditions

$$u(x,0) = u(1,y) = 1$$
 for $\frac{1}{2} \le x \le 1$ and $0 \le y < 1$,
 $u(x,y) = 0$ elsewhere on $\partial \Omega$

We use

- SUPG discretization (see for example [Brooks, Hughes 1990])
- Discrete sine transformation [Liesen, Strakoš 2004]
- A 35×35 grid (results also hold for other grid sizes)
- The zero initial guess in GMRES processes

This yields a linear system with a $35^2 \times 35^2$ block diagonal matrix **A** with tridiagonal Toeplitz blocks of dimension 35×35 :

$$\mathbf{A} x = \begin{pmatrix} \mathbf{T}_{1} & & \\ & \mathbf{T}_{2} & & \\ & & \ddots & \\ & & & \mathbf{T}_{34} & \\ & & & & \mathbf{T}_{35} \end{pmatrix} x = \begin{pmatrix} b^{(1)} \\ b^{(2)} \\ \vdots \\ b^{(34)} \\ b^{(35)} \end{pmatrix} = b,$$

where b is partitioned according to the block-diagonal structure and

$$\mathbf{T}_{i} = \begin{pmatrix} \gamma_{i}\tau_{i} & \gamma_{i}\zeta_{i} \\ \gamma_{i} & \gamma_{i}\tau_{i} & \gamma_{i}\zeta_{i} \\ & \ddots & \ddots & \ddots \\ & & \gamma_{i} & \gamma_{i}\tau_{i} & \gamma_{i}\zeta_{i} \\ & & & \gamma_{i} & \gamma_{i}\tau_{i} \end{pmatrix} = \gamma_{i} \left(\mathbf{S} + \tau_{i}\mathbf{I} + \zeta_{i}\mathbf{S}^{T} \right),$$

and where **I** is the identity matrix and **S** is the downshift matrix $\mathbf{S} = (e_2, \dots, e_{35}, 0)$.

- For very small ν the operator is highly non-normal [Reddy, Trefethen 1994]
- We consider two cases: $\nu = 0.005$ and $\nu = 0.00005$
- Values $\gamma_i \tau_i$ are close to each other and the values $|\gamma_i \zeta_i| << 1$

GMRES norm reduction for the discretized convection diffusion model problem

Dashed line: $\nu = 0.00005$ - Solid line: $\nu = 0.005$.

Slow convergence during the first 35 steps is quantified by a lower bound that considers the small problems of dimension 35

$$\mathbf{T}_i x^{(i)} = b^{(i)}, \qquad i = 1, 2, \dots, 35,$$

and by analysis of GMRES behavior for the small problems, see [Liesen, Strakoš - 2004].

We cannot use this strategy to explain accelerated convergence speed after step 35 because

- The strategy is useless after the 35th iteration, the bound should couple the influence of the individual blocks
- Acceleration of convergence needs to be described be an upper bound

We can, however, exploit the analysis for the small problems:

2. Analysis of acceleration of GMRES convergence speed

We generalize a result for Toeplitz matrices proved in [Liesen, Strakoš - 2004] to explain the initial phase of convergence:

Theorem: Let us consider the residual vectors generated by GMRES applied to Cy = d and assume that $[d, Cd, ..., C^kd]$ has full column rank. If C = B + U with UB = BU and $Ud = \tau d$, then

$$r_k^T = \|r_k\|^2 [1, -\tau, \dots, (-\tau)^k] \cdot \left[d, \mathbf{B}d, \dots, \mathbf{B}^k d\right]^+,$$

$$\|r_k\| = \frac{1}{\|[1, -\tau, \dots, (-\tau)^k] \cdot [d, \mathbf{B}d, \dots, \mathbf{B}^k d]^+\|}.$$

We put $C \equiv A$, $d \equiv b$ and $U \equiv \tau I$, hence $A = B + \tau I$. With B we can recognize a sudden change at k = 35: Recall that we consider a block diagonal system matrix with blocks

$$\mathbf{T}_{i} = \begin{pmatrix} \gamma_{i}\tau_{i} & \gamma_{i}\zeta_{i} \\ \gamma_{i} & \gamma_{i}\tau_{i} & \gamma_{i}\zeta_{i} \\ & \ddots & \ddots & \ddots \\ & & \gamma_{i} & \gamma_{i}\tau_{i} & \gamma_{i}\zeta_{i} \\ & & & \gamma_{i} & \gamma_{i}\tau_{i} \end{pmatrix}, \qquad i = 1, \dots 35.$$

All $|\gamma_i \zeta_i| << 1$ and all $\gamma_i \tau_i$ are close. Hence for a diagonal translation τ close to all $\gamma_i \tau_i$, the matrix $\mathbf{B} = \mathbf{A} - \tau \mathbf{I}$ has blocks

$$\tilde{\mathbf{T}}_{i} = \mathbf{T}_{i} - \tau \mathbf{I} \approx \begin{pmatrix} \mathbf{0} & \mathbf{0} & & \\ \gamma_{i} & \mathbf{0} & \mathbf{0} & \\ & \ddots & \ddots & \ddots & \\ & & \gamma_{i} & \mathbf{0} & \mathbf{0} \\ & & & \gamma_{i} & \mathbf{0} \end{pmatrix}, \qquad i = 1, \dots 35.$$

9

Because of

$$\mathbf{B}b = \begin{pmatrix} \tilde{\mathbf{T}}_{1} & & & \\ & \tilde{\mathbf{T}}_{2} & & & \\ & & \ddots & & \\ & & & \tilde{\mathbf{T}}_{34} & \\ & & & & \tilde{\mathbf{T}}_{35} \end{pmatrix} \begin{pmatrix} b^{(1)} \\ b^{(2)} \\ \vdots \\ b^{(34)} \\ b^{(35)} \end{pmatrix}, \quad \tilde{\mathbf{T}}_{i} \approx \begin{pmatrix} 0 & 0 & & & \\ \gamma_{i} & 0 & 0 & & \\ & & \gamma_{i} & 0 & 0 \\ & & & \gamma_{i} & 0 \end{pmatrix},$$

application of **B** to *b* shifts down one position all entries of all $b^{(i)}$. Hence $\mathbf{B}^{35}b \approx \mathbf{0}$. Now our identity

$$\|r_k\| = \frac{1}{\|[1, -\tau, \dots, (-\tau)^k][b, \mathbf{B}b, \dots, \mathbf{B}^kb]^+\|}$$

yields the upper bound

$$\|r_k\| \leq \frac{\|\mathbf{B}^k b\|}{|\tau|^k},$$

which quantifies the acceleration of convergence.

3. Numerical examples

For $\nu = 0.005$:

- The diagonal values $\gamma_i \tau_i$ are particularly close $\Rightarrow \quad \tau = (\sum_{i=1}^{35} \gamma_i \tau_i)/35$
- The norms $||b^{(1)}||, ||b^{(2)}|| > ||b^{(i)}||$ for $i \ge 3$ $\Rightarrow \tau = (\gamma_1 \tau_1 + \gamma_2 \tau_2)/2$

The choices and $\tau = (\sum_{i=1}^{35} \gamma_i \tau_i)/35$ and $\tau = (\gamma_1 \tau_1 + \gamma_2 \tau_2)/2$ yield

Convergence curve and upper bounds for $\nu = 0.005$

Solid line: GMRES residual norm reduction Dash-dotted line: Upper bound with $\tau = (\gamma_1 \tau_1 + \gamma_2 \tau_2)/2$ Dotted line: Upper bound with $\tau = (\sum_{i=1}^{35} \gamma_i \tau_i)/35$ For $\nu = 0.00005$:

- The upper-diagonal values $|\gamma_i \zeta_i|$ are particularly small: a highly non-normal linear system
- The diagonal values $\gamma_i \tau_i$ are less close than for $\nu = 0.005$.
- Again, the norms $||b^{(1)}||, ||b^{(2)}|| > ||b^{(i)}||$ for $i \ge 3$

The choice $\tau = (\gamma_1 \tau_1 + \gamma_2 \tau_2)/2$ yields the dash-dotted line in the following graph:

Convergence curve and upper bounds for $\nu = 0.00005$

Solid line: GMRES residual norm reduction Dash-dotted line: Upper bound with $\tau = (\gamma_1 \tau_1 + \gamma_2 \tau_2)/2$ Dashed line: Upper bound with adaptive translation

Villmols merci for your attention.

This work is supported by the Program Information Society under project 1ET400300415.