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1. Motivation

• Solution of large sparse symmetric indefinite systems remains

a challenging task.

• Solution of large sparse symmetric positive definite systems

can be done efficiently with the CG method

Rhetorical question: Can we transform solution of an indefinite

system in solution of positive definite systems ?

Example: Diagonal translation. We consider a linear system

Ax = b
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• A is nonsingular, symmetric and indefinite

• λ1 < 0 is the smallest eigenvalue of A

• Consider the positive definite system (A − λI)z = b, where I

is the identity matrix and λ < λ1

• Problem: If we have found the solution z of the trans-

lated system, the solution of the original system is x =
(

I + λ(A − λI)−1
)−1

z

Computation of iterates from iterates of a translated system

is not feasible. But we can formulate a concise relationship

between the residuals.
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2. An equality for MINRES residual vectors

The MINRES method [Paige, Saunders - 1975]: Starting with

an initial guess x0, iterates xk minimize the residual norm ‖rk‖ =

‖b −Axk‖ according to

‖rk‖ = min
s∈AKk(A,r0)

‖r0 − s‖,

where r0 = b −Ax0 and

Kk(A, r0) ≡ span{r0,Ar0, . . . ,Ak−1r0}.

Hence r0 is projected onto AKk(A, r0),

rk ⊥AKk(A, r0).
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Theorem: Let [r0,Ar0, . . . ,Akr0] have full column rank. Then

rT
k = ‖rk‖2 eT

1 [r0,Ar0, . . . ,Akr0]
+, (1)

where [X]+ denotes the Moore-Penrose pseudoinverse of a ma-

trix X.

First proof of this equality by Stewart, later also by [Ipsen -

2000], [Źıtko - 2000], [Liesen, Rozložńık, Strakoš - 2002]. The

elegant proof in the latter article exploits

• X ·X+ = (X ·X+)T

• X has full column rank ⇒ X+ ·X = I
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Proof: rk = r0 − [Ar0, . . . ,Akr0] yk, for some yk ∈ IRk. Hence

rk = [r0, . . . ,Akr0]

(

1
−yk

)

= [r0, . . . ,Akr0][r0, . . . ,Akr0]
+[r0, . . . ,Akr0]

(

1
−yk

)

=
(

[r0, . . . ,Akr0][r0, . . . ,Akr0]
+
)T

rk = ([r0, . . . ,Akr0]
+)T [r0, . . . ,Akr0]

T rk .

• rk ⊥ [Ar0, . . . ,Akr0]

• rT
0 rk = (rk + [Ar0, . . . ,Akr0] yk)

T rk

• [r0, . . . ,Akr0]
T rk = ‖rk‖2e1

⇒ rk = ([r0, . . . ,Akr0]
+)T‖rk‖2e1. 2
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3. An equality for MINRES residual vectors for

diagonally translated systems

An equality for the special case of splitting of tridiagonal Toeplitz

matrices is given in [Liesen, Strakoš - 2004]:

T =

















λ γ

γ λ γ
. . . . . . . . .

γ λ γ

γ λ

















= γS + γST + λI ,

where S is the downshift matrix S = (e2, . . . , en,0).
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Theorem: Residual vectors generated by the MINRES method

applied to a system Tx = b with a given initial residual r0 =

b−Ax0 such that [r0,Tr0, . . . ,Tkr0] has full column rank, satisfy

rT
k = ‖rk‖2 [1,−λ, . . . , (−λ)k]·

[

r0, (γS + γST )r0, . . . , (γS + γST)kr0

]+
.

Generalization for arbitrary diagonally translated systems:
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Theorem: Let λ ∈ IR and let B = A − λI. Then the residual

vectors generated by MINRES applied to Ax = b with initial

residual r0 such that [r0,Ar0, . . . ,Akr0] has full column rank,

satisfy

rT
k = ‖rk‖2 [1,−λ, . . . , (−λ)k] ·

[

r0,Br0, . . . ,Bkr0

]+
,

and

‖rk‖ =
1

‖ [1,−λ, . . . , (−λ)k] [r0,Br0, . . . ,Bkr0]
+‖

.
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Proof:

rT
k = ‖rk‖2 eT

1 [r0,Ar0, . . . ,Akr0]
+ ≡ ‖rk‖2gT

k .

⇒ gT
k [r0,Ar0, . . . ,Akr0] = eT

1 (2)

We can prove gT
k [r0,Br0, . . . ,Bkr0] = [1,−λ, . . . , (−λ)k] : (3)

• Second entry: 0 = gT
k Ar0 = gT

k (B + λI)r0 = gT
k Br0 + λ ⇒

gT
k Br0 = −λ

• Next entries: 0 = gT
k Ajr0 = gT

k (B+λI)jr0 = gT
k

(

∑j
i=0

(

j
i

)

λiBj−i
)

r0 . . .

⇒ gT
k Bjr0 = (−λ)j

Multiply (3) from the right with [r0,Br0, . . . ,Bkr0]
+:

gT
k = [1,−λ, . . . , (−λ)k][r0,Br0, . . . ,Bkr0]

+ . 2
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Corollary:Let B = A − λI and, in addition to the assumptions

of the preceding theorem, B be nonsingular. Let rAk denote the

MINRES residuals for Ax = b and the initial residual r0 and let rBk
denote the MINRES residuals for By = c, with the same initial

residual r0. Then

(rAk )T

‖rAk ‖2
=

(rBk )T

‖rBk ‖2
+ [0,−λ, . . . , (−λ)k] ·

[

r0,Br0, . . . ,Bkr0

]+
.

Proof: Subtract

(rAk )T

‖rAk ‖2
= [1,−λ, . . . , (−λ)k] ·

[

r0,Br0, . . . ,Bkr0

]+

and

(rBk )T

‖rBk ‖2
= [1, 0 , . . . , 0 ] ·

[

r0,Br0, . . . ,Bkr0

]+
. 2
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4. The equality in practice

1. The relation

(rAk )T

‖rAk ‖2
=

(rBk )T

‖rBk ‖2
+ [0,−λ, . . . , (−λ)k] ·

[

r0,Br0, . . . ,Bkr0

]+

shows that the residuals are connected in a rather compli-

cated way, in spite of equality of the Krylov subspaces

Kk(A, r0) = span{r0,Ar0, . . . ,Ak−1r0}

= span{r0, (A− λI)r0, . . . , (A− λI)k−1r0} = Kk(B, r0).

But

AKk(A, r0) 6= (A− λI)Kk(A, r0) = BKk(B, r0),
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and the distance of r0 to these spaces determines conver-

gence speed.

Concerning norms we have

‖rAk ‖ =
‖rBk ‖2

∥

∥

∥

∥

rBk + [0,−λ, . . . , (−λ)k] ·
[

r0,Br0, . . . ,Bkr0

]+
∥

∥

∥

∥

.

Example: Shifted 2D Laplacian.

We choose B ≡ L60, the 2D Laplacian of dimension 3600

from a 60× 60 grid, and A ≡ L60 − 1
10 I. Then λ = −0.1 and

[0,−λ, . . . , (−λ)k] ≈ [0,0.1,0, . . . ,0] but still the difference in

convergence behavior is remarkable.



Laplacian and Shifted Laplacian (3600 × 3600)
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2. Derivation of residual bounds ? We have

‖rk‖
‖r0‖

≤ min
p∈πk

max
λi∈σ(A)

|p(λi)|,

where πk denotes the polynomials of maximal degree k with

the value 1 at the origin. In the positive definite case this

gives the well-known bound

‖rk‖
‖r0‖

≤ min
p∈πk

max
λ∈[λmin,λmax]

|p(λ)| ≤ 2

(√
κ − 1√
κ + 1

)k

, κ =
λmax

λmin
.

In the indefinite case the interval [λmin, λmax] contains zero

and the bound becomes useless. Hence one has to divide the

interval into

[λmin, λs] ∪ [λs+1, λmax], λmin ≤ λs < 0 < λs+1 ≤ λmax.

This makes it very difficult to handle the bound.



If we can choose B = A− λI such that B is positive definite

and ‖rBk + [0,−λ, . . . , (−λ)k] ·
[

r0,Br0, . . . ,Bkr0

]+ ‖ ≥ ‖rBk ‖,
then

‖rAk ‖ =
‖rBk ‖2

∥

∥

∥

∥

rBk + [0,−λ, . . . , (−λ)k] ·
[

r0,Br0, . . . ,Bkr0

]+
∥

∥

∥

∥

≤ ‖rBk ‖.

This should be worked out more in detail.

3. Our equality holds for any residual minimizing method. Orig-

inally: developed for the GMRES method to explain the fol-

lowing convergence behavior (solid line) for a convection dif-

fusion model problem (see e.g. [Liesen, Strakoš - 2004]):



Discretized convection diffusion model problem
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The system matrix A of dimension 152 × 152 is block tridi-

agonal with blocks of dimension 15 × 15:

A =

















λ1I µ1I

γ1I λ2I µ2I
. . . . . . . . .

γ14I λ14I µ14I

γ15I λ15I

















,

where all |µi| << 1 and λi are close.

We apply our theorem with B = A − λI for a λ close to all

λi. Then B is close to the matrix with only the blocks γiI.

Hence B15r0 ≈ 0 for any r0. Now our equality

‖rk‖ =
1

‖ [1,−λ, . . . , (−λ)k] [r0,Br0, . . . ,Bkr0]
+‖



yields the bounds

σmin([r0,Br0, . . . ,Bkr0])
√

∑k
j=0 |λ|2j

≤ ‖rk‖ ≤ ‖Bkr0‖
|λ|k

displayed above. For details we refer to a future article [DT,
Greenbaum, Strakoš - 2005 ?].

4. From the proof it is clear that we can generalize as follows:
Theorem: Let us consider the residual vectors generated by

MINRES applied to Ax = b with an initial residual r0 such

that [r0,Ar0, . . . ,Akr0] has full column rank. If A = B + U

with UB = BU and Ur0 = λr0, then

rT
k = ‖rk‖2 [1,−λ, . . . , (−λ)k] ·

[

r0,Br0, . . . ,Bkr0

]+
.
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