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1. Motivation

e Solution of large sparse symmetric indefinite systems remains
a challenging task.

e Solution of large sparse symmetric positive definite systems
can be done efficiently with the CG method

Rhetorical question: Can we transform solution of an indefinite
system in solution of positive definite systems 7

Example: Diagonal translation. We consider a linear system

Axr =0>



e A is nonsingular, symmetric and indefinite
e \q <O is the smallest eigenvalue of A

e Consider the positive definite system (A — AXI)z = b, where 1
is the identity matrix and A < \q

e Problem: If we have found the solution z of the trans-
lated system, the solution of the original system is =z =

(1 + \(A — AI)_l)_l 2

Computation of iterates from iterates of a translated system
IS not feasible. But we can formulate a concise relationship
between the residuals.



2. An equality for MINRES residual vectors

The MINRES method [Paige, Saunders - 1975]: Starting with
an initial guess x(, iterates xp minimize the residual norm ||r.|| =
|b — Ax|| according to

r = min ro — S
Irell = _pminy liro = sl
where rg = b — Axg and

KrL(A,rg) = span{rg, Arg, ... ,Ak_lro}.

Hence rq is projected onto AKL(A,rg),

T 1 A’Ck(A, 7“0).



Theorem: Let [rg,Arg,...,ARrg] have full column rank. Then
ri = |rill” el [ro, Aro, ..., APro] T, (1)

where [X]"‘ denotes the Moore-Penrose pseudoinverse of a ma-
trix X.

First proof of this equality by Stewart, later also by [Ipsen -
2000], [Zitko - 2000], [Liesen, Rozloznik, Strakos - 2002]. The

elegant proof in the latter article exploits

e X -XT =(X-XT)T

e X has full column rank = Xt .X =1



Proof: 7. =rg— [Arg,...,AFrg]ly;, for some y. € R¥. Hence

1 1
ri = [ro,..., Afrg] (_yk> = [rg,..., Afrgllro, ..., AFrgl Trg, ..., AFrg] (_yk>

T
= ([ro,--- AFrollro, . .., Akro] ) = ([ro, ..., AFro] ) Tlro, ..., AFro]Try .

o 7. L [Arg,..., Akrg]
o rlry = (rp + [Arg, ..., Afrolyp) Ty

o [ro,. ., AfrglTry = ||ry%e1

= Tk — ([?“0,...,Akro]+)T||Tk||2€1. L]



3. An equality for MINRES residual vectors for
diagonally translated systems

An equality for the special case of splitting of tridiagonal Toeplitz
matrices is given in [Liesen, Strakos - 2004]:

T = =S +~ST 4+ I,

where S is the downshift matrix S = (eo,...,en,0).



Theorem: Residual vectors generated by the MINRES method
applied to a system Tx = b with a given initial residual rog =
b— Azxg such that [rg, Tro,..., TErg] has full column rank, satisfy

_I_
o=l (=X  (N)F:[ro, (08 +98Tro, ., (48 +48T)Frg] T

Generalization for arbitrary diagonally translated systems:



Theorem: Let A\ € IR and let B = A — A\I. Then the residual
vectors generated by MINRES applied to Ax = b with initial

residual ro such that [rg,Arq,...,A¥rg] has full column rank,
satisfy

_|_
TZ — HTICHQ [17 _)\7 R (_)‘>k] ’ [’I“O, B?"O, cce BkrO]

Y

and

1

Irell = :
|| [17 _>\7 RIS (_A)k] [7“0, BTC)) cee Bkr0]+||
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Proof:

rl = |lril? el lro, Aro, . . ., AFro] T = ||y %gl.
= 9%[7"07 Arq, ..., Akro] — e{ (2)
We can prove g,{[ro, Brg,...,BFrgl = [1, =X, ..., (=)\)"]: (3)

o Second entry: 0 = g; LArg = 9. I'(B 4+ \Drg = 9. I'Brog+ )\ =
Bro = —A\

e Next entries: 0 = g} Alrg = g/ (B+AI)Irg = g/ (zg_ (f)AiBj—i) ro. ..

= 9} B]7“0 = (—\)J

Multiply (3) from the right with [rg, Bro, ..., Bfrg]™T:
gl =1[1,-X,...,(=N)¥[rg,Bro,...,BFrg]T. O
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Corollary: Let B = A — )\l and, in addition to the assumptions
of the preceding theorem, B be nonsingular. Let 7“]‘3‘ denote the
MINRES residuals for Ax = b and the initial residual ro and let rkB
denote the MINRES residuals for By = ¢, with the same initial
residual rq. Then

(T _ BT

+ [0, —A, ..., (—)\)k] : [ro, Bro,..., Bkror_ :

lrM2 IR
Proof: Subtract
ANT
k) 1 ro,Bro,...,BFro| "
7]
and
B\T
|(|r’<BT|2 =[1,0,...,0] [ro,Bro, .,Bkro]_l_. 0
.
k
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4. The equality in practice

1. The relation
" _ )T
212 PP

shows that the residuals are connected in a rather compli-
cated way, in spite of equality of the Krylov subspaces

—I_ [07 _A7 R/ (_>\>k] ’ |:r07 Br07 c BkrO]—l_

Kk(A, 7“0) = span{ro, Aro, Cee Ak_lfr‘o}
= span{rg, (A — A\Drq,..., (A = XD*1rg} = KL(B, rp).
But

AKL(A,70) # (A = ADKL(A,m9) = BKy(B,70),

13



and the distance of rg to these spaces determines conver-
gence speed.

Concerning norms we have
I

fr*kB —I— [O,—A,a(_)\)k] . [’I"O,BTO)"'7B]€TO:|

A
||rk H — _I_H .

Example: Shifted 2D Laplacian.

We choose B = Lgg, the 2D Laplacian of dimension 3600
from a 60 x 60 grid, and A = Lgg — i5I. Then A = —0.1 and
[0, =), ...,(=\)F] ~ [0,0.1,0,...,0] but still the difference in
convergence behavior is remarkable.



Laplacian and Shifted Laplacian (3600 x 3600)
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2. Derivation of residual bounds ? We have

il < min max W)
Iroll = PeRe  Aco(A)

where m; denotes the polynomials of maximal degree k with

the value 1 at the origin. In the positive definite case this
gives the well-known bound

VE—1\F L Amax
VE+1) '’ '
In the indefinite case the interval [Aqin, Amax] contains zero
and the bound becomes useless. Hence one has to divide the
interval into

Il < min max p(N)] <2 (

|roll = PETE AE[AminsAmax] Amin

[Amin, As] U [>‘s—|—17 Amax]; Amin £ As <0 < )‘s—l—l < Amax-

This makes it very difficult to handle the bound.



If we can choose B = A — )\l such that B is positive definite

_|_
and [[rf + [0,=A,..., (=" - [ro,Bro,...,BFro| " || > |IrB],
then
B2
A [l B
Iritll = : < Il

rkB 4 [O,—)\,---a(_)‘)k] : [T’O;Br07"'7BkTO]+H

This should be worked out more in detail.

. Our equality holds for any residual minimizing method. Orig-
inally: developed for the GMRES method to explain the fol-
lowing convergence behavior (solid line) for a convection dif-
fusion model problem (see e.g. |[Liesen, Strakos - 2004]):



Discretized convection diffusion model problem
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Solid line: GMRES residual norm reduction.



The system matrix A of dimension 152 x 152 is block tridi-
agonal with blocks of dimension 15 x 15:

(AL pql \
v1l A2l ol

Y141 A14l py4l
\ 7151 A151)
where all |u;| << 1 and )\; are close.

We apply our theorem with B = A — \I for a A\ close to all
A;. Then B is close to the matrix with only the blocks ~;lI.
Hence B1°ry ~ 0 for any rg. Now our equality

1
|| [17 _>\7 RIS (_A)k] [7“0, B’I"O, ceey Bkr0]+||

|7kl =



yields the bounds

omin([ro, Bro, . - ., BFrq])
VEE_g A%

IB*ro]]
AR

< [lrell <

displayed above. For details we refer to a future article [DT,
Greenbaum, Strakos - 2005 7].

. From the proof it is clear that we can generalize as follows:
Theorem: Let us consider the residual vectors generated by
MINRES applied to Ax = b with an initial residual rog such
that [rg, Arg, ..., AFrg] has full column rank. If A = B + U
with UB = BU and Urg = Arg, then

_|_
T% — ||rkH2 [17 _)‘7 R (_)\)k] ) [’I“O, BTO? RIS Bkro .
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