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1. Introduction

We consider a linear system

Ax = b

• A is n × n, nonsingular and nonsymmetric

• A is large and sparse

We focuss on the GMRES method [Saad, Schultz - 86]: Starting

with an initial guess x0, iterates xk minimize

‖b −As‖ over all s ∈ x0 + Kk(A, r0),
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where r0 = b −Ax0 and

Kk(A, r0) ≡ span{r0,Ar0, . . . ,Ak−1
r0}.

Because of the residual minimizing property, GMRES conver-

gence curves do not increase.



Here: Orthogonal basis of Kk(A, r0) given by columns of Vk with

AVk = VkHk + ṽk+1eT
k ,

where Hk ∈ IRk×k is upper Hessenberg and ṽk+1 is the unscaled

(k + 1)st basis vector.

Computational and storage costs per iteration grow with the

iteration number hence necessity to restart:

After every cycle of m steps, m << n, we restart the process

with the initial guess xm. Notation: GMRES(m).

Every restart brings us closer to the solution, or, in the worst

case, it leaves the approximation unchanged. The latter sce-

nario is called stagnation and represents the main drawback of

restarted GMRES.
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Techniques to overcome stagnation: Augmentation of Krylov

subspaces [Morgan - 95], [Morgan - 00], deflation through pre-

conditioning [Baglama et al - 98], [Burrage, Erhel, Pohl - 96],

exploitation of inner-outer cycles [Saad - 93], [Van der Vorst,

Vuik - 94].

Here we describe an alternative strategy to accelerate restarted

GMRES. It is based on a specific rank one update of the system

matrix.

2. The rank one updated system matrix

Consider the modified system matrix

Â := A− byT ,

where b is the right hand side of the system and y ∈ IRn is a

free parameter vector.
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Then

A−1
b = (Â+ byT )−1b = Â

−1
b −

yTÂ
−1

b

1 + yTÂ
−1

b
Â

−1
b.

Computation of the right hand side involves solving the auxiliary

system defined as

Âx̂ = b.

If GMRES(m) has found a satisfactory approximation x̂k to the

solution x̂, we obtain the back-transformed iterate x̄k for the

original system by approximating as

A−1
b = x̂ −

yT x̂

1 + yT x̂
x̂ =

1

1 + yT x̂
x̂ ≈

1

1 + yT x̂k

x̂k ≡ x̄k ,
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provided yT x̂k 6= −1.



Solving with this formula makes sense when the residual norms

for the auxiliary system converge faster than the residual norms

for the original system. We will try to enforce this through special

choices of the parameter vector y. This is the main idea of our

approach.

2. Acceleration with the rank one updated
system

The basic form of the algorithms we propose:

1. Apply m initial steps of GMRES to Ax = b with x0 = 0

and gain information to construct the parameter vector y.
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2. Apply GMRES(m) to Âx̂ = b, with x0 = 0 for the initial

cycle, and find a satisfactory approximation x̂k.

3. Back-transform with
1

1+yT x̂k
x̂k = x̄k.

The advantage of executing initial cycles with zero initial guesses

is that with x0 = 0 = x̂0

Kk(Â, b)= span{b, (A− byT )b, . . . , (A− byT )k−1b}.

Hence Kk(Â, b) = Kk(A, b) and information gained from the pro-

cess applied to Ax = b can be easily translated to a process for

Âx̂ = b.



In our quest for finding an y ∈ IRn such that GMRES(m) applied

to

(A− byT )x̂ = b

has fastest possible convergence speed, we were inspired by a

series of articles [Greenbaum, Strakoš - 94], [Greenbaum, Pták,

Strakoš - 96], [Arioli, Pták, Strakoš - 98] proving that



• Given a non-increasing convergence curve, a spectrum and a

right hand side,

• there exist matrices with the given spectrum such that GM-

RES applied to such a matrix and the given right hand side

yields the given convergence curve.

Question: Can we construct an y such that A − byT belongs

to the class with the prescribed convergence curve and spectrum

?

Answer: We can either prescribe the spectrum or prescribe the

convergence curve by the choice of y, but not both.
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(a). The normal case

If the matrix A is normal, convergence can be related to eigen-

values and we may design a parameter vector that eliminates

convergence hampering eigenvalues.

Theorem 1: Let the matrix B ∈ IRl×l and the vector c ∈ IRl be

such that the Krylov subspace Kl(B, c) has full dimension and let

{θ1, . . . , θl} be a set of real and complex conjugate values. Then

there exists a vector z ∈ IRl such that B−czT has the eigenvalues

θ1, . . . , θl.

The proof, which was inspired by the proof in [Greenbaum, Pták,

Strakoš - 96], shows that prescription of the eigenvalues of the

matrix A− byT is too expensive for a large system dimension n.
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But: We have to our disposal a small matrix whose eigenvalues

approximate the eigenvalues of A:

Hk = VT
kAVk,

the restriction of A to Kk(A, r0).

Moreover, with x̂0 = 0 = x0,

Ĥk = VT
k (A− byT )Vk = Hk −VT

k byTVk,

and the spectrum of Ĥk approximates the spec-trum of Â.

Hence with Theorem 1 we can prescribe the eigenvalues of Ĥk,

and presume that the eigenvalues of Â are close.

Example: The shifted Laplacian L−0.1 I of dimension 400. The

smallest eigenvalues are −0.088 and −0.072. The Hessenberg
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matrix H15 has 2 negative eigenvalues −0.088 and −0.0452. We

define an auxiliary Hessenberg matrix Ĥ15 where these smallest

eigenvalues take the value 1. In the resulting auxiliary matrix

−0.088 has vanished.
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(b). The non-normal case

It is in general not clear what properties cause restarted GMRES

to stagnate, hence here we will prescribe convergence curves

instead of the spectrum.
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Theorem 2: Let ‖b‖ = f0 ≥ f1 ≥ f2 · · · ≥ fk > 0, k < n, be

a non-increasing sequence of real values. If Kk(A, b) has full

dimension, then there exists at least one y ∈ IRn such that the

residual vectors r̂j obtained by application of the GMRES method

to the auxiliary system with Â = A− byT and initial guess x̂0 = 0

satisfy

‖r̂j‖ = fj, 0 ≤ j ≤ k.

The proof is based on the observation that the convergence

speed of GMRES depends on the distance form b to the sub-

spaces

ÂKj(Â, b) = (A− byT )Kj(A, b), j = 1, . . . , k,
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[Greenbaum, Strakoš - 94], which we can modify with the pa-

rameter vector y. Hence we can

1. construct a vector y ∈ IRn that prescribes the first k residual

norms generated by GMRES applied to (A−byT)x̂ = b with

initial guess x̂0 = 0;

2. apply GMRES(m) to (A−byT)x̂ = b and presume that the

first k residual norms of every restart decrease similarly as

the prescribed norms.

Example: Linear system from a convection-diffusion problem

(dimension 1225). We prescribe the first 10 residual norms of



GMRES(30): ‖r1‖ = 0.9, ‖r2‖ = 0.8, ‖r3‖ = 0.7, ‖r4‖ = 0.6,

‖r5‖ = 0.5, ‖r6‖ = 0.4, ‖r7‖ = 0.3, ‖r8‖ = 0.2, ‖r9‖ = 0.1.
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4. Open questions

• Normal case: The succeeding of our approach depends es-

sentially on the quality of the used approximate eigenvalues.

This holds in fact for many other GMRES accelerating tech-

niques too.

• Non-normal case: More heuristical idea, less clear why the

one stagnation can be overcome but the next can not. The

influence of the choice of prescribed residual norms on the

quality of the back-transformation has to be better under-

stood. Surprisingly, the strategy works especially well for

many linear systems arising from discretized partial differen-

tial equations, but we are not able to say why this is so.
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