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1. Introduction to preconditioner updates

Consider a sequence of linear systems

A(i)x = b(i), i = 0,1, . . . ,

where A(i) ∈ IRn×n are nonsingular sparse matrices; b(i) ∈ IRn.

Applications: Computational fluid dynamics, structural mechan-

ics, numerical optimization, etc . . . .

Classical example: A system of nonlinear equations F(x) = 0 for

F : IRn → IRn solved by a Newton or Broyden-type method. In

case of the classical Newton method

J(xi)(xi+1 − xi) = −F(xi), i = 1, . . . ,

where J(xi) is the Jacobian evaluated in the current iteration xi

or its approximation.
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There is a strong need for reduction of costs by sharing

some of the computational effort among the subsequent

linear systems. In the context of preconditioning:

Computing preconditioners M(0),M(1), . . . for individual systems

separately, may be very expensive. A remedy is freezing the

preconditioner: Using the same preconditioner for a sequence of

linear systems (see, e.g [Brown, Saad - 1990]). This approach is

very natural in the context of a matrix-free environment, where

the system matrices A(i) may be available only in the form of

matrix-vector products, see also [Knoll, Keyes - 2004].

Freezing the preconditioner need not be enough. We may reuse

some additional information from the previous linear systems.

For example:

3



In the Newton-Krylov framework: Define preconditioners that

incorporate recycled Krylov subspaces, see e.g. [Loghin, Ruiz,

Touhami- 2004], [Parks, de Sturler, Mackey, Johnson, Maiti -

2004].

There is some recent work in approximate preconditioner updates

with respect to the changes in the system matrix as well:

• Approximate diagonal updates of approximate inverse pre-

conditioners for solving parabolic PDEs were proposed in

[Benzi, Bertaccini - 2003], see also [Bertaccini - 2004].

• A straightforward approximate rank one update for a quasi-

Newton method in the SPD case is described in [Morales,

Nocedal - 2000], [Bergamaschi, Bru, Martinez, Putti - 2001].



We present new approaches to approximate updates of general

nonsymmetric preconditioners which may be useful in solving

subsequent linear systems.

We do not confine ourselves to particular classes of linear or

nonlinear solvers (e.g. Krylov subspace methods, Quasi-Newton

methods). We address the following 2 problems:

• How can we update, in theory, a preconditioner in such a way

that the updated preconditioner is likely to be as powerful as

the original one?

• How can we approximate, in practice, such an update in order

to obtain a preconditioner that is inexpensive to compute and

to apply?
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Consider two linear systems denoted by

Ax = b and A+x+ = b+.

Denote the difference matrix A−A+ by B.

Let M be a preconditioner approximating A. We have

‖A−M‖ = ‖A−M + A+ −A+‖ = ‖A+ − (M−B)‖,

hence M+ ≡ M − B is an updated preconditioner for A+ of the

same “level” of accuracy as M is for A.

This “ideal” updated preconditioner cannot be used, in general,

in practice since multiplication of vectors with (M − B)−1 may

be too expensive.

There are ways, however, to approximate multiplication with

(M−B)−1, as we will now show.
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2. Proposed sparse preconditioner updates

Assume M = LDU ≈ A, where L and U are lower, resp. upper

triangular and have unit main diagonal.

Our approximations of the ideal update are based on the idea

that often the entries of L and U decay when moving away

from the main diagonal, see e.g. [Benzi, Tůma - 2000], [Benzi,

Bertaccini - 2003]. Sufficient diagonal dominance may also be

imposed if A contains a strong transversal [Olschowka, Neumaier

- 1996], [Duff, Koster - 1999, 2001] such that its entries can be

permuted to the main diagonal. Thus we assume more or less

L ≈ I or U ≈ I.
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Then we can approximate, for example, as

(M−B)−1 =
(

L(DU−L−1B)
)−1

≈ (DU−B)−1L−1,

if DU − B is nonsingular. If DU−B denotes a nonsingular and

easily invertible approximation of DU − B, then we define M+

by

M+ = L(DU−B). (1)

Lemma 2. Let ||A−LDU|| = ε||A|| < ||B||. Then the precondi-

tioner from (1) satisfies

||A+ −M+|| ≤ ||A+ −LDU||
||L(DU−DU−B) −B|| + ε||A||

||B|| − ε||A||

≤ ||A+ −LDU|| ·
‖L‖ ‖DU−B−DU−B‖ + ||L− I|| ‖B‖ + ε||A||

||B|| − ε||A||
.

Next we propose approximations of DU−B.
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A very simple choice of DU−B for M+ in (1) is

DU−B ≡ triu(DU−B), M+ = L · triu(DU−B),

where triu denotes the upper triangle (including the main di-

agonal). From Lemma 2, assuming L ≈ I, M+ is accurate if

the upper triangle of B contains an important part of the whole

difference matrix B. This seems to be the case if the differ-

ence matrix is rather nonsymmetric as in upwind perturbations

in nonlinear convection-diffusion problems.

Model problem: The two-dimensional nonlinear convection-

diffusion problem [Kelley - 1995]

∆u − Ru∇u = 2000x(1 − x)y(1 − y), R = 50,

on the unit square, discretized by 5-point finite differences on a

uniform 70x70 grid with as initial approximation the discretiza-

tion of u0(x, y) = 0.



A/M LDU L · triu(DU−B)

A(0) / M(0) 21 21

A(1) / M(0) 29 25

A(2) / M(0) 39 27

A(3) / M(0) 52 25

A(4) / M(0) 77 25

A(5) / M(0) 80 26

A(6) / M(0) 102 26

A(7) / M(0) 102 27

A(8) / M(0) 98 27

A(9) / M(0) 101 26

A(10) / M(0) 99 26

A(0)−(10) / M(0)−(10) 21 ± 5 —

Numbers of BiCGSTAB iterations for solving preconditioned linear systems
of a nonlinear convection-diffusion problem with no updates and triangular

updates, respectively. M(0) = ILUT(0.1,5) with
‖I−L‖

‖L‖
≈ 0.4.
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We considered two improvements of the update L ·triu(DU−B):

1. Adaptive choice of L · triu(DU−B) or tril(LD−B) ·U based

on ‖triu(B)‖ and ‖tril(B)‖ (and ‖I− L‖ and ‖I−U‖);

2. A strategy to approximate DU − B by a generally non-

triangular but easily invertible matrix. We developed an algo-

rithm to find rows i1, . . . , iK with

DU−B = D̃(I− B̃) = D̃(I−
K
∑

j=1

eij b̃ij∗)

= D̃(I− ei1b̃i1∗)(I− ei2b̃i2∗) . . . (I− eiK b̃iK∗), (2)

where diag(DU−B) ≡ D̃, and D̃
−1

(D̃ −DU−B) ≡ B̃.
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Example with adaptive choice of triangular updates:

Simulation of air flow in a tunnel at a low Mach number (provided

by P. Birken):

• Von Neumann boundary conditions, Lax-Friedrichs flux

• Finite volume discretization (first order)

• ODE solved with the implicit Euler method

• Every time step yields a nonlinear system of equations that

is solved with a Newton-type method

• Linear systems have dimension 4800 and have maximally 20

nonzero entries per row.
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nz=138024, ILUT(0.001/5), timep=0.05, psize=135798
A / M Self prec Freeze Update

Its Time Its Time Its Time

A(1) / M (0) 24 0.44 17 0.34 17 0.31

A(5) / M (0) 29 0.52 19 0.33 19 0.34

A(10) / M (0) 30 0.50 17 0.27 17 0.27

A(15) / M (0) 33 0.59 21 0.39 19 0.34

A(20) / M (0) 32 0.59 19 0.34 27 0.31

A(25) / M (0) 33 0.51 20 0.33 19 0.33

A(30) / M (0) 34 0.61 24 0.44 21 0.34

A(35) / M (0) 33 0.61 23 0.42 19 0.36

A(40) / M (0) 39 0.67 31 0.52 24 0.39

A(45) / M (0) 44 0.73 33 0.55 27 0.45

A(50) / M (0) 40 0.70 39 0.63 24 0.44

A(55) / M (0) 40 0.69 47 0.78 25 0.42

A(60) / M (0) 47 0.80 80 1.41 31 0.56

A(65) / M (0) 47 0.75 107 1.64 27 0.42

A(70) / M (0) 38 0.70 72 1.28 28 0.51

A(75) / M (0) 114 1.98 230 4.06 105 1.96
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3. A future issue:

Question: Can we permute the whole sequence in such a way

that we know where the dominating entries of the difference

matrices B are located ?

For example: We may permute the first system matrix A(0) to

block triangular form (see, e.g. [Pothen, Fan - 1990]):

PA(0) =

A11 A12 A13

0 A22 A23

0 0 A33
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If the other system-matrices have the same sparsity pattern, we

can permute the whole sequence as

PA(i)x = Pb(i), i = 0,1, . . . ,

and all matrices will have upper triangular form.

Then clearly we can expect dominating entries of the difference

matrices lay in the upper triangle and the preconditioner updates

L(DU− triu(PB))

may be stronger than without the permutation P.

In addition, the computation of the upper triangular form can

be modified to take into account the magnitude of the entries.
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More details can be found in ,,Preconditioner updates for solv-

ing sequences of large and sparse nonsymmetric linear systems”

[Duintjer Tebbens, Tůma - to be submitted in 2006], see web-

pages of the authors.

Thank you for your attention.
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