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1. Introduction: Classification Tasks

Classification task:

• Assign a given sample, based on its properties, to pre-defined

classes

• Different classifiers utilize different decision rules, e.g. cen-

troid based, nearest neighborhood and support vector ma-

chines methods

• Decision rules are derived from information gained from train-

ing samples, ’learning process’
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• In applications like text document classification or protein

fold class prediction, the samples may contain a very large

number of variables

• To enhance efficiency one frequently performs a preprocess-

ing step known as dimension reduction of the space of vari-

ables

• One of the simplest and most popular methods that incor-

porate dimension reduction is Fisher’s Linear Discriminant

Analysis (FLDA).



2. Fisher’s Linear Discriminant Analysis

FLDA idea: project the variables on a space of small dimension
such that class information is maximally preserved.

This is achieved with between-class- and within-class-variance.
With

• n: Number of training samples
• p: Number of variables
• xi ∈ IRp: The ith sample
• x̄ ∈ IRp: The grand mean of all samples, x̄ = 1

n

∑n
i=1 xi

the total variance matrix T ∈ IRp×p is defined as

T =
1

n− 1

n∑

i=1

(xi − x̄)(xi − x̄)T .
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With

• g: The number of classes

• nj: The number of samples in class j

• Nj: The set of indices i for which xi is in class j

• x̄j ∈ IRp: The mean vector in class j, x̄j = 1
nj

∑
i∈Nj

xi

the between-class-variance matrix B ∈ IRp×p is defined as

B =
1

g − 1

g∑

j=1

nj(x̄j − x̄)(x̄j − x̄)T

and the within-class-variance matrix W ∈ IRp×p is defined as

W =
1

n− g

g∑

j=1

∑

i∈Nj

(xi − x̄j)(xi − x̄j)
T .
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Clearly, T, B and W are positive semi-definite.

One can easily prove that

(n− 1)T = (g − 1)B + (n− g)W.

For a vector v ∈ IRp:

• vTTv: Total variance

• vTBv: Between class variance

• vTWv: Within class variance

FLDA seeks projection vectors ci ∈ IRp, i < g, such that the

projected samples (c1, . . . , ci)
Txj have maximal between-class-

variance and minimal within-class-variance. This leads to Fisher’s

criterion:
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Fisher’s criterion: A projection vector ci must satisfy

cT
i Bci

cT
i Wci

= max
c∈IRp, c 6=0

cTBc

cTWc
.

The criterion is formulated for nonsingular W. Then it is equiv-
alent to finding the largest eigenpairs of the generalized eigen-
problem

(B− λW)c = 0, (1)

which can be transformed to a standard eigenproblem, e.g.

(W−1B− λI)c = 0. (2)

The FLDA-projection space of dimension i, i < g, is spanned by
the eigenvectors corresponding to the i largest eigenvalues.
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3. Fisher’s criterion for the p >> n problem

In some modern applications (text document classification, pro-
tein fold prediction), the number of variables is so high that one
cannot afford to work with the same number of samples (the
’p >> n problem’). As a sum of n rank one matrices,

W =
1

n− g

g∑

j=1

∑

i∈Nj

(xi − x̄j)(xi − x̄j)
T

has rank(W) ≤ n and W must be singular.

This makes Fisher’s maximization problem

max
c∈IRp, c 6=0

cTBc

cTWc

challenging.
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One group of strategies for the p >> n problem solves a modified
generalized eigenproblem

(B− λW̃)c = 0,

with a matrix

W̃ ≈W

in some sense.

Often, W̃ is chosen so that we can easily transform to a standard
eigenproblem: Small diagonal perturbation, truncated SVD,. . . ,
see e.g. [Hong and Yang - 1991], [Cheng, Zhuang and Yang -
1992], [Krzanowski et al. - 1995].

Hence one solves a modified maximization problem

max
c∈IRp, c 6=0

cTBc

cTW̃c
.
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Others address Fisher’s criterion directly [Cheng, Liao, Ko, Lin

and Yu - 2000], [Howland, Park et al. - 2003, 2004, 2005]. They

argue that

cTBc

cTWc
(3)

is maximized for c ∈ null(W). Hence the best projection vectors

are to be chosen from null(W).

Indeed, a vector c from null(W) trivially has within-variance

cTWc = 0

and because W is positive semi-definite, the within-variance is

minimal.

In addition, cTBc = 0 should be maximized.
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Methods of this type choose their leading projection vectors from

null(W). If necessary, further projection vectors are obtained by

proceeding to the complement of null(W).

In the best case, Fisher’s original idea to minimize within vari-

ance and maximize between variance is preserved, the criterion

is modified as

max
c∈IRp, Wc=0

cTBc. (4)

We refer to application of this criterion as to optimal linear dis-

criminant analysis. Experiments seem to indicate that optimal

linear discriminant analysis leads to the most powerful classifica-

tion.
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4. Efficient Implementation

A straightforward implementation (see e.g. [Krzanowski et al. -
1995] consists of

1. Computation of a spectral decomposition of W

2. Defining the matrix WN whose orthogonal columns span the
null space of W

3. Finding the leading eigenpairs of WT
NBWN

W has rank at most n, hence null(W) has dimension at least p−n

and so has the eigenproblem in 3. Unfortunately, for p >> n this
is still very much.

How can we enhance efficiency?
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Exploit the special structure of the variance matrices: For T,

T =
1

n− 1

n∑

i=1

(xi − x̄)(xi − x̄)T =
1

n− 1
(X− x̄e)(X− x̄e)T .

Here, X ∈ IRp×n is the sample matrix whose ith column contains
the ith sample and e = (1,1, . . . ,1).

Similarly, B and W can be written as products of rectangular
matrices RB,RW ∈ IRp×n

B = RBRT
B, W = RWRT

W .

It suffices to compute the (economy size) singular value decom-
position UΣVT of RW to obtain null(W). Indeed,

W = UΣ2UT

and the singular vectors corresponding to zero singular values
span the wanted null space.
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Analogously, the eigenpairs of WT
NBWN = WT

NRBRT
BWN can

be found by considering the SVD of RT
BWN .

This SVD technique is used in [Howland, Park et al. - 2003,
2004, 2005] and in the implementation of the statistical soft-
ware called R-environment. It reduces computational costs sig-
nificantly.

Storage costs, however, stay high. They are dominated by

WN ∈ IRp×(p−n).

In many applications where p is large (say over 10.000), this is
just too much to be able to store.

If a sparse matrix were available we could apply a sparse method
and save storage costs.
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The sample matrix X is sparse in a number of important appli-

cations. Unfortunately, in

B =
1

g − 1

g∑

j=1

nj(x̄j − x̄)(x̄j − x̄)T

and

W =
1

n− g

g∑

j=1

∑

i∈Nj

(xi − x̄j)(xi − x̄j)
T .

sparsity is destroyed by the group means.

How can we combine exploitation of sparsity with optimal LDA

and possibly low storage and computational costs ?
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We propose an implementation based on eliminating the common

null space of B and W. Vectors of the common null space

are uninteresting because both within and between variance are

minimal.

The common null space of B and W is the null space of T.

P r o o f : Any v ∈ IRp is in the null space of B iff vTBv =

vTRBRT
Bv = 0 and the same holds for W and T. With

(n− 1)T = (g − 1)B + (n− g)W

and the fact that W and B are positive semi-definite we have:

vTTv = 0 ⇔ vT

n− 1
((g − 1)B + (n− g)W) v = 0 ⇔

vTBv = 0 and vTWv = 0.
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Hence the complement of the common null space is spanned
by the eigenvectors corresponding to nonzero eigenvalues of T.
The eigendecomposition of

T =
1

n− 1
(X− x̄e)(X− x̄e)T

can be obtained with the SVD of X− x̄e. Two crucial points:

• X− x̄e is a rank one updated sparse matrix, hence the SVD
can be computed with a sparse method.

• The complement of the common null space has dimension
at most n. Hence after eliminating the common null space,
we are left over with a small projected maximization problem

max
c∈IRp, c 6=0

cTPTBPc

cTPTWPc
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For the projected problem we can apply direct methods to find

the largest eigenvectors of PTBP in null(PTWP).

Certainly, one could also compute the SVD of X − x̄e with a

direct method, which is backward stable.

On the other hand, a sparse method may compute singular vec-

tors consecutively, without necessity to store the whole matrix

of singular vectors.

The advantage of our elimination of the common null space is

that we have the choice between direct and sparse methods.
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