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1. Motivation

We recall a famous result from [Greenbaum, Strakoš - 94],
[Greenbaum, Pták, Strakoš - 96], [Arioli, Pták, Strakoš - 98]:

Theorem: If we have given

• A right-hand side b ∈ IRn

• non-increasing values ‖b‖ = f0 ≥ f1 ≥ f2 · · · ≥ fn−1 > fn = 0

• a set of real and possibly complex conjugated values {θ1, . . . , θn}
then there exists a class A of real n × n matrices such that the

residual vectors rj obtained by application of GMRES to

Ax = b, A ∈ A,

satisfy

‖rj‖ = fj, 0 ≤ j ≤ n and σ(A) = {θ1, . . . , θn}.
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The result is often used to show eigenvalues need not say any-

thing about convergence speed.

Question: Can we use it for something constructive ? Given a

linear system

Ax = b,

can we transform A so that it belongs to a class A with prescribed

convergence curve?

And can we exploit the transformed system to solve the original

system ?
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The proof shows the class A is given by matrices of the form

A = WRHWT ,

where R is upper triangular, W = (w1, . . . , wn) is orthonormal

such that

WT b =

















±
√

f2
0 − f2

1
...

±
√

f2
n−2 − f2

n−1

±
√

f2
n−1

















, H =













0 . . . 0 1/(bT wn)

1 0 −(bTw1)/(b
Twn)

. . . ... ...

0 . . . 1 −(bTwn−1)/(b
Twn)













and σ(RH) = {θ1, . . . , θn}.

A simple transformation is the following rank one update (other

rank one acceleration techniques include [Eirola, Nevanlinna -

1989] and [Bollhöfer, Mehrmann - 1998] ):
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2. The rank one updated system matrix

Consider the modified system matrix

Â := A− byT ,

where b is the right hand side and y ∈ IRn is a free parameter

vector. Then the Sherman-Morrison formula gives

A−1b = (Â+ byT )−1b = Â
−1

b − yTÂ
−1

b

1 + yTÂ
−1

b
Â

−1
b.

Computation of the rightmost expression involves solving the

auxiliary system defined as

Âx̂ = b.
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Let x̂k be a satisfactory approximation to the solution x̂ of the

auxiliary system.

Then

A−1b = Â
−1

b − yTÂ
−1

b

1 + yTÂ
−1

b
Â

−1
b = x̂ − yT x̂

1 + yT x̂
x̂

=
1

1 + yT x̂
x̂ ≈ 1

1 + yT x̂k
x̂k ≡ x̄k ,

provided yT x̂k 6= −1.

We call x̄k the back-transformed iterate for the original sys-

tem.
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We will try to enforce acceleration through special choices of

the parameter vector y. The basic form of the algorithms we

propose:

1. Apply m initial steps of GMRES to Ax = b with x0 = 0
and gain information to construct the parameter vector y.

2. Apply GMRES(m) to Âx̂ = b, (with x̂0 = 0 for the initial

cycle), until a satisfactory approximation x̂k is found.

3. Back-transform to obtain the iterate x̄k for the original sys-

tem x̄k = 1
1+yT x̂k

x̂k.
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The advantage of executing initial cycles with zero initial guesses

is that with x0 = 0 = x̂0

Kk(Â, b) = span{b, (A− byT )b, . . . , (A− byT)k−1b},

hence

Kk(Â, b) = Kk(A, b)

and information gained from the GMRES process applied to

Ax = b can be easily translated to a process for Âx̂ = b.

In this case we can either prescribe the spectrum or prescribe

the convergence curve by the choice of y (but not both).
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3. Prescription of the spectrum

Theorem 1: Let the matrix B ∈ IRl×l and the vector c ∈ IRl be

such that the Krylov subspace Kl(B, c) has full dimension and let

{θ1, . . . , θl} be a set of real and complex conjugate values. Then

there exists a vector z ∈ IRl such that B−czT has the eigenvalues

θ1, . . . , θl.

A simplified proof for diagonalizable B, B = XDX−1,D =diag(d1, . . . , dl):

For z ∈ IRl,

σ(B − czT ) = σ
(

X(D −X−1czTX)X−1
)

= σ(D−X−1czTX).

We put c̃ = X−1c and z̃ = XT z.
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The characteristic polynomial of the rank one updated diagonal

matrix D− c̃z̃T equals

l
∏

i=1

(di−λ)−(c̃1z̃1)
l
∏

i 6=1

(di−λ)−(c̃2z̃2)
l
∏

i 6=2

(di−λ) · · ·−(c̃lz̃l)
l
∏

i 6=l

(di−λ),

see e.g. [DT - 2004]. Define the numbers αi,j through

l
∏

i=1

(di − λ) =:
l
∑

i=0

αi,0λi,
l
∏

i=1,i 6=j

(di − λ) =:
l−1
∑

i=0

αi,jλ
i.

The coefficients αi before λ of the whole characteristic polyno-

mial depend upon (c̃1z̃1), . . . , (c̃lz̃l) as

αi = αi,0 − αi,1(c̃1z̃1) − . . . αi,l(c̃lz̃l).

They can be forced to take any value.
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Especially, they can assume the coefficients of the wanted char-

acteristic polynomial

l
∏

i=1

(λ − θl)

by solving






α0,1 α0,2 . . . α0,l
...

αl−1,1 αl−1,l













c̃1z̃1
...

c̃lz̃l






=







α0,0
...

αl−1,0






,

provided the system is non-singular. After that, put c = Xc̃ and

z = X−T z̃. 2

The proof shows prescription of the eigenvalues of the matrix

A− byT is too expensive for a large system dimension n.



But: We have to our disposal a small matrix whose eigenvalues

(the Ritz values) approximate the eigenvalues of A:

Hk = VT
kAVk,

the restriction of A to Kk(A, r0).

Moreover, with x̂0 = 0 = x0, V̂ = V and

Ĥk = VT
k (A− byT)Vk = Hk −VT

k byTVk,

and Ĥk is again a rank one update of Hk.

Hence with Theorem 1 we can prescribe the eigenvalues of Ĥk,

and presume that the eigenvalues of Â are close.
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If the matrix A is close to normal, convergence can be related

to eigenvalues and we may design a parameter vector that elim-

inates convergence hampering eigenvalues.

Example: A driven cavity matrix from Matrix Market (Cavity01)

A ∈ IR317×317, with ‖X‖‖X−1‖ = ±20. With right hand side b =

(1, . . . ,1)T )/
√

317, GMRES(10) generates a Hessenberg matrix

H10 with

σ(H10) = {0.046,0.5, . . . ,7327}.
We can define y ∈ IR317 such that GMRES for

(A− byT)x̂ = b

generates a Hessenberg matrix Ĥ10 with eigenvalue 30 instead of

0.046 (the others are not modified). The corresponding auxiliary

system converges as
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Near-normal driven cavity matrix of dimension 317
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Dash-dotted line: Original system
Dotted line: Rank one updated system

Solid line: Residual norms after back-transformation
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We observe quite a large gap, which is due to

‖r̄k‖ = ‖b −Ax̄k‖ =
‖b − Âx̂k‖
|1 + yT x̂k|

=
‖r̂k‖

|1 + yT x̂k|
.

What can we say about the denominator |1 + yT x̂k|?

The Sherman-Morrison Theorem states: Under the assumption

that Â is non-singular,

1 + yT Â
−1

b 6= 0 ⇔ Â + byT = A is non-singular.

Hence unless we have forced a singular matrix Â = A− byT , then

with convergence we must have

1 + yT x̂k ≈ 1 + yT Â
−1

b 6= 0.

More precisely: If ‖x̂ − x̂k‖ = ε, then

|1 + yT x̂k| > |1 + yT Â
−1

b| − ε‖y‖.
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Whatever happens during the GMRES(m) process, at conver-

gence the gap is non-zero.

We also now something about the gap created after the initial

restart cycle:

Let H̃k =

(

Hk
hk+1,keT

k

)

and Ĥk = Hk −VT
k byTVk ≡ Hk − e1zT .

Lemma 1: We introduce the notation

a1 = zT (H̃
T
k H̃k)

−1z, a2 = zT(H̃
T
k H̃k)

−1H̃
T
k e1 and c = eT

1 H̃k(H̃
T
k H̃k)

−1H̃
T
k e1.

Then after k iterations of the auxiliary system, the gap equals

1 + yT x̂k = 1 +
a1(c − 1) + a2(1 − a2)

a1(1 − c) + (1 − a2)
2

.
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Apart from the danger of a large gap, our strategy suffers

from too many degrees of freedom: We can prescribe any

spectrum, which one guarantees to overcome stagnation ?

An idea is to modify only one Ritz value at the time and define

nested rank one updates. Then the Ritz value can be chosen

uniquely by a criterion that makes it as large as possible

while keeping the gap small. We take a closer look at this

problem.

Changing only one Ritz value θ to θ̂ is very easy, it suffices to

define

z = (θ − θ̂)sk,

where sk is an appropriately scaled left eigenvector for θ, see e.g.

[Zemke - 2006].
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In fact, with a multiple of an exact left eigenvector y of A for

λ1,

yT(A−byT ) = (λ1−yT b)yT , yT Â
−1

= yT (A−byT)−1 =
1

λ1 − yT b
yT .

Let A = XΛX−1 be the spectral decomposition of A where the

elements of Λ appear in increasing order. Then y = αeT
1X−1 and

(A−byT)X = XΛ−αbeT
1 = X(Λ−αX−1beT

1) = X













λ1
. . .

λn






− α(X−1b,0, . . . )







hence λ̂1 = λ1 − αeT
1X−1b and

1 + yT Â
−1

b = 1 +
yT b

λ1 − yT b
=

λ1

λ1 − yT b
=

λ1

λ1 − αeT
1X−1b

=
λ1

λ̂1
!
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We observed (but did not prove yet) that in case of modifying

only Ritz values, with only left Ritz vectors, then

1 + yT Â
−1

b ˜
θ1
θ̂1

,

too.

The modified Ritz value should be chosen as small as possible,

but ensure non-stagnation of the auxiliary system. Example:
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Near-normal driven cavity matrix of dimension 317
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Thin line: Original system
Dotted line: Back-transformed system, θ̂ = 106 · θ
Dashed line: Back-transformed system, θ̂ = 103 · θ

Dash-dotted line: Rank one updated system, θ̂ = 103 · θ
Solid line: Rank one updated system, θ̂ = 106 · θ
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4. Prescription of the convergence curve

For significantly non-normal matrices, it is in general not clear

what properties cause restarted GMRES to stagnate, hence here

we will prescribe convergence curves instead of the spectrum.

Theorem 2: Let ‖b‖ = f0 ≥ f1 ≥ f2 · · · ≥ fk > 0, k < n, be

a non-increasing sequence of real values. If Kk(A, b) has full

dimension, then there exists at least one y ∈ IRn such that the

residual vectors r̂j obtained by application of the GMRES method

to the auxiliary system with Â = A− byT and initial guess x̂0 = 0

satisfy

‖r̂j‖ = fj, 0 ≤ j ≤ k.
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The proof [DT - 2004] is based on the observation that the

convergence speed of GMRES depends on the distance from b
to the subspaces

ÂKj(Â, b) = (A− byT)Kj(A, b), j = 1, . . . , k,

[Greenbaum, Strakoš - 94], which we can modify with the para-

meter vector y. We can

1. construct a vector y ∈ IRn that prescribes the first k residual

norms generated by GMRES applied to (A−byT)x̂ = b with

initial guess x̂0 = 0;

2. apply GMRES(m) to (A−byT)x̂ = b and presume that the

first k residual norms of every restart decrease similarly as

the prescribed norms of the initial cycle.
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Example: Linear system from a convection-diffusion problem

−e−xy △ u + (10 + ye−xy)ux + (10 + xe−xy)uy − 60u = 1

on the unit square with Dirichlet boundary condition u = 0 on

∂([0,1])2. Finite difference approximation on a 35×35 grid yields

the stiffness matrix A ∈ IR1225×1225. Then A = XDX−1, where

‖X‖‖X−1‖ = ±225.

The right-hand side is b = (1/35, . . . ,1/35)T and we choose x0 =

0. We prescribe the first 9 residual norms of GMRES(30):

‖r̂1‖ = 0.9, ‖r̂2‖ = 0.8, ‖r̂3‖ = 0.7, ‖r̂4‖ = 0.6, ‖r̂5‖ = 0.5,

‖r̂6‖ = 0.4, ‖r̂7‖ = 0.3, ‖r̂8‖ = 0.2, ‖r̂9‖ = 0.1.



1225 × 1225 non-normal convection-diffusion system
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Dash-dotted line: Original system
Dashed line: Rank one updated system

Solid curve: Residual norms after back-transformation
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5. Future work

• Near-normal case: The succeeding of our approach depends

essentially on the quality of the used approximate eigenval-

ues. This holds in fact for many other GMRES accelerating

techniques too. But our technique keeps computations in the

small projected space. It should be compared with Morgan’s

augmentation technique, which is among spectrum modify-

ing techniques optimal in some sense, see [Eiermann, Ernst

- 2000].

• Non-normal case: More heuristical idea, less clear why the

one stagnation can be overcome but the next can not. The

influence of the choice of prescribed residual norms on the

quality of the back-transformation has to be better under-

stood.
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We can extend the strategy to updates of higher rank. For exam-

ple, with Â = A− (b, v2, . . . , vk)Y
T we can prescribe all elements

of the Hessenberg matrix.

Note our techniques hold for other residual minimizing methods

as well. For example, for symmetric indefinite systems it may

be applied to MINRES. Here, prescription of spectrum should be

even more effective. We would give up symmetry for the sake

of definiteness.

Example: The shifted Laplacian L−0.1 I of dimension 400. The

smallest eigenvalues are −0.088 and −0.072. The Hessenberg

matrix H15 has 2 negative eigenvalues −0.088 and −0.0452. We

define an auxiliary Hessenberg matrix Ĥ15 where these smallest

eigenvalues take the value 1. In the resulting auxiliary matrix

−0.088 has vanished.
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The shifted Laplacian L− 0.1 I of dimension 400
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Dash-dotted line: Original system
Dashed line: Rank one updated system

Solid curve: Residual norms after back-transformation
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