Introductic 00 000 000 000 Methods 000000 000 000 Experiment 0 0000 0 Summary 00

Implementations of Fisher's Linear Discriminant Analysis from the Numerical Point of View

Pavel Schlesinger ¹ joint work with Jurjen Duintjer Tebbens ²

¹Institute of Formal and Applied Linguistics Faculty of Mathematics and Physics Charles University, Prague

²Institute of Computer Science Academy of Sciences of the Czech Republic, Prague

> CSDA 2005, Limassol October 29, 2005

Methods 000000 000 000 000 Experiment 0 0000 0 Summary 00

Outline

Introduction

Motivation Fisher's Criterion The $p \gg n$ case Underlying Linear Algebra

Methods

Pseudoinverse Epsilon-perturbation Null-space Common Null-space Elimination

Experiment

Summary

Intro	oductio
•0	
000)
00	
000	C

Methods
000000
000
000
000

Summary 00

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction Motivation

Fisher's Criterion The $p \gg n$ case Underlying Linear Algebra

Methods

Pseudoinverse Epsilon-perturbation Null-space Common Null-space Elimination

Experiment

Summary

Introd	ductio
0.	
000	
00	
000	

Summary 00

Motivation Example

- protein folding classification into 42 groups
- frequencies of 20 amino acids as predictors
 - 20 singles, 400 pairs, 8000 triples, ...
- expensive data-collection
 - just hundreds of examples 268
- classical $p \gg n$ issue in microarray, document classification etc.

Problems

- matrix storage
- computational cost
 - matrix multiplications, inversions
 - computing inner products
 - optimalization, QP, ...
- ... no straightforward using of p < n methods

Introduction	0
0.	
000	
00	
000	

Summary 00

Motivation Example

- protein folding classification into 42 groups
- frequencies of 20 amino acids as predictors
 - 20 singles, 400 pairs, 8000 triples, ...
- expensive data-collection
 - just hundreds of examples 268
- classical *p* ≫ *n* issue in microarray, document classification etc.

Problems

- matrix storage
- computational cost
 - matrix multiplications, inversions
 - computing inner products
 - optimalization, QP, ...
- ... no straightforward using of p < n methods

M	et	ho	d	S
00		00	0	
00)		
00)		
00)		

Experiment 0 0000 0 Summary 00

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

Introduction

Motivation

Fisher's Criterion

The $p \gg n$ case Underlying Linear Algebra

Methods

Pseudoinverse Epsilon-perturbation Null-space Common Null-space Elimination

Experiment

Summary

Introduction
00
000
00
000

Methods	
000000	
000	
000	
000	

Summary 00

Fisher's Criterion I

- variance ... Var $(\mathbf{X}) = \mathbf{\Sigma} = \mathsf{E}_{\mathbf{X}} \left[(\mathbf{X} \mu) (\mathbf{X} \mu)^T \right]$
- decomposition (between- and within-variance)

$$\pmb{\Sigma} = \pmb{\Sigma}_{\scriptscriptstyle B} + \pmb{\Sigma}_{\scriptscriptstyle W}$$

$$\boldsymbol{\Sigma}_{B} = \sum_{k=1}^{K} \pi_{k} (\boldsymbol{\mu}_{k} - \boldsymbol{\mu}) (\boldsymbol{\mu}_{k} - \boldsymbol{\mu})^{T}$$
$$\boldsymbol{\Sigma}_{W} = \sum_{k=1}^{K} \pi_{k} \mathsf{E}_{\boldsymbol{X}|G} \left[(\boldsymbol{X} - \boldsymbol{\mu}_{k}) (\boldsymbol{X} - \boldsymbol{\mu}_{k})^{T} \right]$$

- total variance after projection ... Var $(\mathbf{c}^T \mathbf{X}) = \mathbf{c}^T \mathbf{\Sigma}_{_B} \mathbf{c} + \mathbf{c}^T \mathbf{\Sigma}_{_W} \mathbf{c}$
- Fisher's criterion

$$\max_{\mathbf{c}\in\mathbb{R}^{p}}\frac{\mathbf{c}^{T}\boldsymbol{\Sigma}_{B}\mathbf{c}}{\mathbf{c}^{T}\boldsymbol{\Sigma}_{W}\mathbf{c}} \quad \text{s. t. } \mathbf{c}\neq\mathbf{0}$$

Experiment 0 0000 Summary 00

Fisher's Criterion II

- generalized eigenproblem with matrix pencil (Σ_{B}, Σ_{W})
- (ordered) ν -eigenvectors give projected matrix $\mathbf{C} = \mathbf{C}_{\nu}$
- 1. estimate

•
$$\boldsymbol{\mu}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{\scriptscriptstyle B}, \boldsymbol{\Sigma}_{\scriptscriptstyle W}$$

$$\boldsymbol{B} \equiv \frac{(\boldsymbol{G}\boldsymbol{M} - \mathbf{1}\bar{\boldsymbol{x}})^{T}(\boldsymbol{G}\boldsymbol{M} - \mathbf{1}\bar{\boldsymbol{x}})}{g - 1}, \quad \boldsymbol{W} \equiv \frac{(\boldsymbol{X} - \boldsymbol{G}\boldsymbol{M})^{T}(\boldsymbol{X} - \boldsymbol{G}\boldsymbol{M})}{n - g}$$

•
$$\boldsymbol{B}, \boldsymbol{W} \in \mathbb{R}^{p \times p}, \, \boldsymbol{B}, \, \boldsymbol{W} \geq 0$$

- $\operatorname{rank}(\boldsymbol{B}) \leq K 1, r = \operatorname{rank}(\boldsymbol{W}) \leq \min\{n, p\}$
- 2. solve $Bc \lambda Wc = 0$ to obtain C
 - find K 1 largest eigenpairs
- 3. compute
 - all distances $||\widetilde{\pmb{x}} \widetilde{\pmb{\mu}}_k||^2 = ||\pmb{x} \pmb{\mu}_k||^2_{\pmb{\mathsf{CC}}^{\intercal}}$
 - find group label through minimum

Experiment 0 0000 Summary 00

Fisher's Criterion II

- generalized eigenproblem with matrix pencil (Σ_{B}, Σ_{W})
- (ordered) ν -eigenvectors give projected matrix $\mathbf{C} = \mathbf{C}_{\nu}$
- 1. estimate

•
$$\boldsymbol{\mu}, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_{\scriptscriptstyle B}, \boldsymbol{\Sigma}_{\scriptscriptstyle W}$$

$$\boldsymbol{B} \equiv \frac{(\boldsymbol{G}\boldsymbol{M} - \mathbf{1}\bar{\boldsymbol{x}})^{T}(\boldsymbol{G}\boldsymbol{M} - \mathbf{1}\bar{\boldsymbol{x}})}{g - 1}, \quad \boldsymbol{W} \equiv \frac{(\boldsymbol{X} - \boldsymbol{G}\boldsymbol{M})^{T}(\boldsymbol{X} - \boldsymbol{G}\boldsymbol{M})}{n - g}$$

•
$$\boldsymbol{B}, \boldsymbol{W} \in \mathbb{R}^{p \times p}, \boldsymbol{B}, \boldsymbol{W} \ge 0$$

• rank $(\boldsymbol{B}) \le K - 1, r = \operatorname{rank}(\boldsymbol{W}) \le \min\{n, p\}$

2. solve $Bc - \lambda Wc = 0$ to obtain C

- find K 1 largest eigenpairs
- 3. compute
 - all distances $||\widetilde{\pmb{x}} \widetilde{\pmb{\mu}}_k||^2 = ||\pmb{x} \pmb{\mu}_k||^2_{\pmb{\mathsf{CC}}^{\intercal}}$
 - find group label through minimum

Experiment 0 0000 0 Summary 00

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

Introduction

Motivation Fisher's Criterion The $p \gg n$ case

Underlying Linear Algebra

Methods

Pseudoinverse Epsilon-perturbation Null-space Common Null-space Elimination

Experiment

Summary

Methods 000000 000 000 Experiment 0 0000 0 Summary 00

The $p \gg n$ case

 if *W* nonsingular ⇒ transformation to a standard eigenproblem, e. g.

$$(\boldsymbol{W}^{-1}\boldsymbol{B} - \lambda \mathbf{I})\mathbf{c} = \mathbf{0}$$

- in the $p \gg n$ case **W** is singular \Rightarrow
 - transformation not possible
 - very challenging eigenproblem
 - may even happen that

$$\det(\boldsymbol{B} - \lambda \boldsymbol{W}) = 0 \qquad \forall \, \lambda \in \mathbb{C} \, !$$

pair $\{\boldsymbol{B}, \boldsymbol{W}\}$ is called singular matrix pencil

Intr	oduction
00	
00	0
00	
	0

Methods	
000	
000	
000	

Summary 00

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

Introduction

Motivation Fisher's Criterion The $p \gg n$ case Underlying Linear Algebra

Methods

Pseudoinverse Epsilon-perturbation Null-space Common Null-space Elimination

Experiment

Summary

Methods 000000 000 000 000 Experiment 0 0000 0 Summary 00

Underlying Linear Algebra

Generalized Schur Decomposition [Moler, Stewart - 1973]:

$$oldsymbol{Q}^T(oldsymbol{B}-oldsymbol{W})oldsymbol{Z}=oldsymbol{T}-oldsymbol{S}$$

- **Q**, **Z** orthogonal, **T**, **S** upper triangular
- singularity \Rightarrow possible zeros on main diagonals of $\textbf{\textit{T}}$ and $\textbf{\textit{S}}$

1. $t_{ii} \neq 0 \neq s_{ii} \Rightarrow \det(\mathbf{T} - \frac{t_{ii}}{s_{ii}}\mathbf{S}) = 0, \frac{t_{ii}}{s_{ii}} \dots$ finite eigenvalue 2. $t_{ii} = 0, s_{ii} \neq 0 \Rightarrow \det(\mathbf{T} - 0 \cdot \mathbf{S}) = 0, 0 \dots$ finite —"— 3. $t_{ii} \neq 0, s_{ii} = 0 \Rightarrow$ " $\det(\mathbf{T} - \infty \mathbf{S}) = 0$ ", "infinite" —"— 4. $t_{ii} = 0 = s_{ii} \Rightarrow \det(\mathbf{T} - \lambda \mathbf{S}) = 0, \forall \lambda \in \mathbb{C}$

Methods 000000 000 000 000 Experiment 0 0000 0 Summary 00

Underlying Linear Algebra

Generalized Schur Decomposition [Moler, Stewart - 1973]:

$$\mathbf{Q}^{T}(\mathbf{B}-\mathbf{W})\mathbf{Z}=\mathbf{T}-\mathbf{S}$$

- **Q**, **Z** orthogonal, **T**, **S** upper triangular
- singularity \Rightarrow possible zeros on main diagonals of ${\it T}$ and ${\it S}$

1. $t_{ii} \neq 0 \neq s_{ii} \Rightarrow \det(\mathbf{T} - \frac{t_{ii}}{s_{ii}}\mathbf{S}) = 0, \frac{t_{ii}}{s_{ii}} \dots$ finite eigenvalue 2. $t_{ii} = 0, s_{ii} \neq 0 \Rightarrow \det(\mathbf{T} - 0 \cdot \mathbf{S}) = 0, 0 \dots$ finite —"— 3. $t_{ii} \neq 0, s_{ii} = 0 \Rightarrow$ "det $(\mathbf{T} - \infty \mathbf{S}) = 0$ ", "infinite" —"— 4. $t_{ii} = 0 = s_{ii} \Rightarrow \det(\mathbf{T} - \lambda \mathbf{S}) = 0, \forall \lambda \in \mathbb{C}$

how to determine the K – 1 largest eigenvalues???

Methods 000000 000 000 000 Experiment 0 0000 0 Summary 00

Underlying Linear Algebra

Generalized Schur Decomposition [Moler, Stewart - 1973]:

$$\mathbf{Q}^{T}(\mathbf{B}-\mathbf{W})\mathbf{Z}=\mathbf{T}-\mathbf{S}$$

- **Q**, **Z** orthogonal, **T**, **S** upper triangular
- singularity \Rightarrow possible zeros on main diagonals of ${\it T}$ and ${\it S}$

1. $t_{ii} \neq 0 \neq s_{ii} \Rightarrow \det(\mathbf{T} - \frac{t_{ii}}{s_{ii}}\mathbf{S}) = 0, \frac{t_{ii}}{s_{ii}} \dots$ finite eigenvalue 2. $t_{ii} = 0, s_{ii} \neq 0 \Rightarrow \det(\mathbf{T} - 0 \cdot \mathbf{S}) = 0, 0 \dots$ finite —"— 3. $t_{ii} \neq 0, s_{ii} = 0 \Rightarrow "\det(\mathbf{T} - \infty \mathbf{S}) = 0", "infinite" —"—$ $4. <math>t_{ii} = 0 = s_{ii} \Rightarrow \det(\mathbf{T} - \lambda \mathbf{S}) = 0, \forall \lambda \in \mathbb{C}$

how to determine the K – 1 largest eigenvalues???

Methods 000000 000 000 000 Experiment 0 0000 0 Summary 00

Underlying Linear Algebra

Generalized Schur Decomposition [Moler, Stewart - 1973]:

$$\mathbf{Q}^{T}(\mathbf{B}-\mathbf{W})\mathbf{Z}=\mathbf{T}-\mathbf{S}$$

- **Q**, **Z** orthogonal, **T**, **S** upper triangular
- singularity \Rightarrow possible zeros on main diagonals of ${\it T}$ and ${\it S}$

1. $t_{ii} \neq 0 \neq s_{ii} \Rightarrow \det(\mathbf{T} - \frac{t_{ii}}{s_{ii}}\mathbf{S}) = 0, \frac{t_{ii}}{s_{ii}} \dots$ finite eigenvalue 2. $t_{ii} = 0, s_{ii} \neq 0 \Rightarrow \det(\mathbf{T} - 0 \cdot \mathbf{S}) = 0, 0 \dots$ finite —"— 3. $t_{ii} \neq 0, s_{ii} = 0 \Rightarrow "\det(\mathbf{T} - \infty \mathbf{S}) = 0", "infinite" —"—$ $4. <math>t_{ii} = 0 = s_{ii} \Rightarrow \det(\mathbf{T} - \lambda \mathbf{S}) = 0, \forall \lambda \in \mathbb{C}$

how to determine the K – 1 largest eigenvalues???

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

Methods 000000 000 000 000 Experiment 0 0000 0 Summary 00

Underlying Linear Algebra

Generalized Schur Decomposition [Moler, Stewart - 1973]:

$$\mathbf{Q}^{T}(\mathbf{B}-\mathbf{W})\mathbf{Z}=\mathbf{T}-\mathbf{S}$$

- **Q**, **Z** orthogonal, **T**, **S** upper triangular
- singularity \Rightarrow possible zeros on main diagonals of ${\it T}$ and ${\it S}$

1. $t_{ii} \neq 0 \neq s_{ii} \Rightarrow \det(\mathbf{T} - \frac{t_{ii}}{s_{ii}}\mathbf{S}) = 0, \frac{t_{ii}}{s_{ii}} \dots$ finite eigenvalue 2. $t_{ii} = 0, s_{ii} \neq 0 \Rightarrow \det(\mathbf{T} - 0 \cdot \mathbf{S}) = 0, 0 \dots$ finite —"— 3. $t_{ii} \neq 0, s_{ii} = 0 \Rightarrow "\det(\mathbf{T} - \infty \mathbf{S}) = 0", "infinite" —"—$ $4. <math>t_{ii} = 0 = s_{ii} \Rightarrow \det(\mathbf{T} - \lambda \mathbf{S}) = 0, \forall \lambda \in \mathbb{C}$

• how to determine the K - 1 largest eigenvalues???

Methods 000000 000 000 000 Experiment 0 0000 0 Summary 00

Underlying Linear Algebra

Generalized Schur Decomposition [Moler, Stewart - 1973]:

$$\mathbf{Q}^{T}(\mathbf{B}-\mathbf{W})\mathbf{Z}=\mathbf{T}-\mathbf{S}$$

- **Q**, **Z** orthogonal, **T**, **S** upper triangular
- singularity \Rightarrow possible zeros on main diagonals of ${\it T}$ and ${\it S}$

1. $t_{ii} \neq 0 \neq s_{ii} \Rightarrow \det(\mathbf{T} - \frac{t_{ii}}{s_{ii}}\mathbf{S}) = 0, \frac{t_{ii}}{s_{ii}} \dots$ finite eigenvalue 2. $t_{ii} = 0, s_{ii} \neq 0 \Rightarrow \det(\mathbf{T} - 0 \cdot \mathbf{S}) = 0, 0 \dots$ finite —"— 3. $t_{ii} \neq 0, s_{ii} = 0 \Rightarrow "\det(\mathbf{T} - \infty \mathbf{S}) = 0", "infinite" —"—$ $4. <math>t_{ii} = 0 = s_{ii} \Rightarrow \det(\mathbf{T} - \lambda \mathbf{S}) = 0, \forall \lambda \in \mathbb{C}$

• how to determine the K – 1 largest eigenvalues???

Introdu	iction
00	
000	
00	
000	

Summary 00

Relation with FLDA

- 1. finite nonzero $(\boldsymbol{B} - \frac{t_{ii}}{s_{ii}} \boldsymbol{W}) \mathbf{c} = 0 \quad \Rightarrow \quad \mathbf{c}^T \boldsymbol{B} \mathbf{c} = \frac{t_{ii}}{s_{ii}} \mathbf{c}^T \boldsymbol{W} \mathbf{c}$ • $\lambda = \frac{t_{ii}}{2\pi} \dots$ ratio of between- to within-variance complement of null-spaces of B, W $(\boldsymbol{B} - 0 \cdot \boldsymbol{W})\mathbf{c} = 0 \quad \Rightarrow \quad \mathbf{c}^T \boldsymbol{B} \mathbf{c} = 0$ $\mathbf{c}^T \mathbf{B} \mathbf{c} = \lambda \mathbf{c}^T \mathbf{W} \mathbf{c} \quad \forall \lambda \in \mathbb{C} \quad " \Rightarrow " \quad \mathbf{c}^T \mathbf{W} \mathbf{c} = \mathbf{0} = \mathbf{c}^T \mathbf{B} \mathbf{c}$
 - ◇□> <률> < ≣> < ≣> < ■</p>

Introductio	n
00	
000	
00	
000	

Summary 00

Relation with FLDA

1. finite nonzero $(\boldsymbol{B} - \frac{t_{ii}}{s_{ii}} \boldsymbol{W}) \mathbf{c} = 0 \quad \Rightarrow \quad \mathbf{c}^T \boldsymbol{B} \mathbf{c} = \frac{t_{ii}}{s_{ii}} \mathbf{c}^T \boldsymbol{W} \mathbf{c}$ • $\lambda = \frac{t_{ii}}{s_{ii}} \dots$ ratio of between- to within-variance complement of null-spaces of B, W $(\boldsymbol{B} - 0 \cdot \boldsymbol{W})\mathbf{c} = 0 \quad \Rightarrow \quad \mathbf{c}^T \boldsymbol{B} \mathbf{c} = 0$ $\mathbf{c}^T \mathbf{B} \mathbf{c} = \lambda \mathbf{c}^T \mathbf{W} \mathbf{c} \quad \forall \lambda \in \mathbb{C} \quad " \Rightarrow " \quad \mathbf{c}^T \mathbf{W} \mathbf{c} = \mathbf{0} = \mathbf{c}^T \mathbf{B} \mathbf{c}$

◆□▶ ◆□▶ ◆三▶ ◆□▶ ▲□▶

Introductio	n
00	
000	
00	
000	

Summary 00

Relation with FLDA

1. finite nonzero $(\boldsymbol{B} - \frac{t_{ii}}{s_{ii}} \boldsymbol{W}) \mathbf{c} = 0 \quad \Rightarrow \quad \mathbf{c}^T \boldsymbol{B} \mathbf{c} = \frac{t_{ii}}{s_{ii}} \mathbf{c}^T \boldsymbol{W} \mathbf{c}$ • $\lambda = \frac{t_{ii}}{s_{ii}} \dots$ ratio of between- to within-variance complement of null-spaces of B, W $(\boldsymbol{B} - 0 \cdot \boldsymbol{W})\mathbf{c} = 0 \quad \Rightarrow \quad \mathbf{c}^T \boldsymbol{B} \mathbf{c} = 0$

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ >

Introductio	n
00	
000	
00	
000	

Summary 00

Relation with FLDA

1. finite nonzero

$$(oldsymbol{B} - rac{t_{ij}}{s_{ij}}oldsymbol{W})oldsymbol{c} = 0 \quad \Rightarrow \quad oldsymbol{c}^Toldsymbol{B}oldsymbol{c} = rac{t_{ij}}{s_{ij}}oldsymbol{c}^Toldsymbol{W}oldsymbol{c}$$

- $\lambda = \frac{t_{ii}}{s_{ii}} \dots$ ratio of between- to within-variance
- complement of null-spaces of B, W
- 2. finite zero

$$(\boldsymbol{B} - \boldsymbol{0} \cdot \boldsymbol{W}) \mathbf{c} = \mathbf{0} \quad \Rightarrow \quad \mathbf{c}^{\mathsf{T}} \boldsymbol{B} \mathbf{c} = \mathbf{0}$$

- opposite of FLDA aim
- null-space of *B*
- 3. infinite

 $\mathbf{c}^T \mathbf{B} \mathbf{c} = \lambda \mathbf{c}^T \mathbf{W} \mathbf{c}$ for $\lambda = \infty$ " \Rightarrow " $\mathbf{c}^T \mathbf{W} \mathbf{c} = \mathbf{0}$

- wanted for FLDA, quality depends on c^TBc
- null-space of W
- 4. any value is eigenvalue

 $\mathbf{c}^{\mathsf{T}}\mathbf{B}\mathbf{c} = \lambda \mathbf{c}^{\mathsf{T}}\mathbf{W}\mathbf{c} \quad \forall \lambda \in \mathbb{C} \quad " \Rightarrow " \quad \mathbf{c}^{\mathsf{T}}\mathbf{W}\mathbf{c} = \mathbf{0} = \mathbf{c}^{\mathsf{T}}\mathbf{B}\mathbf{c}$

- uninteresting for FLDA
- common null-space of B, W

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introductio	n
00	
000	
00	
000	

Summary 00

Relation with FLDA

1. finite nonzero

$$(\mathbf{B} - rac{t_{ij}}{\mathbf{s}_{ij}}\mathbf{W})\mathbf{c} = 0 \quad \Rightarrow \quad \mathbf{c}^T \mathbf{B} \mathbf{c} = rac{t_{ij}}{\mathbf{s}_{ij}}\mathbf{c}^T \mathbf{W} \mathbf{c}$$

- $\lambda = \frac{t_{ii}}{s_{ii}} \dots$ ratio of between- to within-variance
- complement of null-spaces of B, W
- 2. finite zero

$$(\boldsymbol{B} - 0 \cdot \boldsymbol{W}) \mathbf{c} = 0 \quad \Rightarrow \quad \mathbf{c}^T \boldsymbol{B} \mathbf{c} = \mathbf{0}$$

- opposite of FLDA aim
- null-space of *B*
- 3. infinite

 $\mathbf{c}^T \mathbf{B} \mathbf{c} = \lambda \mathbf{c}^T \mathbf{W} \mathbf{c}$ for $\lambda = \infty$ " \Rightarrow " $\mathbf{c}^T \mathbf{W} \mathbf{c} = \mathbf{0}$

- wanted for FLDA, quality depends on c^TBc
- null-space of W
- 4. any value is eigenvalue

 $\mathbf{c}^{\mathsf{T}}\mathbf{B}\mathbf{c} = \lambda \mathbf{c}^{\mathsf{T}}\mathbf{W}\mathbf{c} \quad \forall \lambda \in \mathbb{C} \quad " \Rightarrow " \quad \mathbf{c}^{\mathsf{T}}\mathbf{W}\mathbf{c} = \mathbf{0} = \mathbf{c}^{\mathsf{T}}\mathbf{B}\mathbf{c}$

- uninteresting for FLDA
- common null-space of B, W

Introduction
00
000
00
000

Summary 00

Relation with FLDA

1. finite nonzero

$$(\mathbf{B} - \frac{t_{ij}}{\mathbf{s}_{ii}}\mathbf{W})\mathbf{c} = 0 \quad \Rightarrow \quad \mathbf{c}^T \mathbf{B} \mathbf{c} = \frac{t_{ii}}{\mathbf{s}_{ii}}\mathbf{c}^T \mathbf{W} \mathbf{c}$$

- $\lambda = \frac{t_{ii}}{s_{ii}} \dots$ ratio of between- to within-variance
- complement of null-spaces of B, W
- 2. finite zero

$$(\boldsymbol{B} - 0 \cdot \boldsymbol{W}) \mathbf{c} = 0 \quad \Rightarrow \quad \mathbf{c}^{\mathsf{T}} \boldsymbol{B} \mathbf{c} = 0$$

- opposite of FLDA aim
- null-space of *B*
- 3. infinite

 $\mathbf{c}^{\mathsf{T}} \mathbf{B} \mathbf{c} = \lambda \mathbf{c}^{\mathsf{T}} \mathbf{W} \mathbf{c}$ for $\lambda = \infty$ " \Rightarrow " $\mathbf{c}^{\mathsf{T}} \mathbf{W} \mathbf{c} = \mathbf{0}$

wanted for FLDA, quality depends on c^TBc

null-space of W

4. any value is eigenvalue

 $\mathbf{c}^{\mathsf{T}}\mathbf{B}\mathbf{c} = \lambda \mathbf{c}^{\mathsf{T}}\mathbf{W}\mathbf{c} \quad \forall \lambda \in \mathbb{C} \quad " \Rightarrow " \quad \mathbf{c}^{\mathsf{T}}\mathbf{W}\mathbf{c} = \mathbf{0} = \mathbf{c}^{\mathsf{T}}\mathbf{B}\mathbf{c}$

- uninteresting for FLDA
- common null-space of B, W

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction
00
000
00
000

Summary 00

Relation with FLDA

1. finite nonzero

$$(\mathbf{B} - \frac{t_{ij}}{\mathbf{s}_{ii}}\mathbf{W})\mathbf{c} = 0 \quad \Rightarrow \quad \mathbf{c}^T \mathbf{B} \mathbf{c} = \frac{t_{ii}}{\mathbf{s}_{ii}}\mathbf{c}^T \mathbf{W} \mathbf{c}$$

- $\lambda = \frac{t_{ii}}{s_{ii}} \dots$ ratio of between- to within-variance
- complement of null-spaces of B, W
- 2. finite zero

$$(\boldsymbol{B} - 0 \cdot \boldsymbol{W}) \mathbf{c} = 0 \quad \Rightarrow \quad \mathbf{c}^{\mathsf{T}} \boldsymbol{B} \mathbf{c} = \mathbf{0}$$

- opposite of FLDA aim
- null-space of *B*
- 3. infinite

 $\mathbf{c}^T \mathbf{B} \mathbf{c} = \lambda \mathbf{c}^T \mathbf{W} \mathbf{c}$ for $\lambda = \infty$ " \Rightarrow " $\mathbf{c}^T \mathbf{W} \mathbf{c} = \mathbf{0}$

- wanted for FLDA, quality depends on c^TBc
- null-space of W
- 4. any value is eigenvalue

 $\mathbf{c}^{\mathsf{T}}\mathbf{B}\mathbf{c} = \lambda \mathbf{c}^{\mathsf{T}}\mathbf{W}\mathbf{c} \quad \forall \, \lambda \in \mathbb{C} \quad " \Rightarrow " \quad \mathbf{c}^{\mathsf{T}}\mathbf{W}\mathbf{c} = \mathbf{0} = \mathbf{c}^{\mathsf{T}}\mathbf{B}\mathbf{c}$

- uninteresting for FLDA
- common null-space of B, W

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction
00
000
00
000

Summary 00

Relation with FLDA

1. finite nonzero

$$(\mathbf{B} - \frac{t_{ij}}{\mathbf{s}_{ii}}\mathbf{W})\mathbf{c} = 0 \quad \Rightarrow \quad \mathbf{c}^T \mathbf{B} \mathbf{c} = \frac{t_{ii}}{\mathbf{s}_{ii}}\mathbf{c}^T \mathbf{W} \mathbf{c}$$

- $\lambda = \frac{t_{ii}}{s_{ii}} \dots$ ratio of between- to within-variance
- complement of null-spaces of B, W
- 2. finite zero

$$(\boldsymbol{B} - 0 \cdot \boldsymbol{W})\mathbf{c} = 0 \quad \Rightarrow \quad \mathbf{c}^{\mathsf{T}} \boldsymbol{B} \mathbf{c} = 0$$

- opposite of FLDA aim
- null-space of *B*
- 3. infinite

 $\mathbf{c}^T \mathbf{B} \mathbf{c} = \lambda \mathbf{c}^T \mathbf{W} \mathbf{c}$ for $\lambda = \infty$ " \Rightarrow " $\mathbf{c}^T \mathbf{W} \mathbf{c} = \mathbf{0}$

- wanted for FLDA, quality depends on $\mathbf{c}^T \mathbf{B} \mathbf{c}$
- null-space of W
- 4. any value is eigenvalue

 $\mathbf{c}^{\mathsf{T}}\mathbf{B}\mathbf{c} = \lambda \mathbf{c}^{\mathsf{T}}\mathbf{W}\mathbf{c} \quad \forall \lambda \in \mathbb{C} \quad " \Rightarrow " \quad \mathbf{c}^{\mathsf{T}}\mathbf{W}\mathbf{c} = \mathbf{0} = \mathbf{c}^{\mathsf{T}}\mathbf{B}\mathbf{c}$

- uninteresting for FLDA
- common null-space of B, W

Introduction
00
000
00
000

Summary 00

Relation with FLDA

1. finite nonzero

$$(\mathbf{B} - rac{t_{ii}}{s_{ii}}\mathbf{W})\mathbf{c} = 0 \quad \Rightarrow \quad \mathbf{c}^T \mathbf{B} \mathbf{c} = rac{t_{ii}}{s_{ii}}\mathbf{c}^T \mathbf{W} \mathbf{c}$$

- $\lambda = \frac{t_{ii}}{s_{ii}} \dots$ ratio of between- to within-variance
- complement of null-spaces of B, W
- 2. finite zero

$$(\boldsymbol{B} - 0 \cdot \boldsymbol{W})\mathbf{c} = 0 \quad \Rightarrow \quad \mathbf{c}^{\mathsf{T}}\boldsymbol{B}\mathbf{c} = \mathbf{0}$$

- opposite of FLDA aim
- null-space of *B*
- 3. infinite

 $\mathbf{c}^T \mathbf{B} \mathbf{c} = \lambda \mathbf{c}^T \mathbf{W} \mathbf{c}$ for $\lambda = \infty$ " \Rightarrow " $\mathbf{c}^T \mathbf{W} \mathbf{c} = \mathbf{0}$

- wanted for FLDA, quality depends on $\mathbf{c}^T \mathbf{B} \mathbf{c}$
- null-space of W
- 4. any value is eigenvalue

 $\mathbf{c}^{\mathsf{T}}\mathbf{B}\mathbf{c} = \lambda \mathbf{c}^{\mathsf{T}}\mathbf{W}\mathbf{c} \quad \forall \lambda \in \mathbb{C} \quad " \Rightarrow " \quad \mathbf{c}^{\mathsf{T}}\mathbf{W}\mathbf{c} = \mathbf{0} = \mathbf{c}^{\mathsf{T}}\mathbf{B}\mathbf{c}$

- uninteresting for FLDA
- common null-space of B, W

Introduction
00
000
00
000

Methods
000000
000
000
000

Summary 00

Relation with FLDA

1. finite nonzero

$$(\mathbf{B} - rac{t_{ii}}{s_{ii}}\mathbf{W})\mathbf{c} = 0 \quad \Rightarrow \quad \mathbf{c}^T \mathbf{B} \mathbf{c} = rac{t_{ii}}{s_{ii}}\mathbf{c}^T \mathbf{W} \mathbf{c}$$

- $\lambda = \frac{t_{ii}}{s_{ii}} \dots$ ratio of between- to within-variance
- complement of null-spaces of B, W
- 2. finite zero

$$(\boldsymbol{B} - 0 \cdot \boldsymbol{W})\mathbf{c} = 0 \quad \Rightarrow \quad \mathbf{c}^{\mathsf{T}} \boldsymbol{B} \mathbf{c} = 0$$

- opposite of FLDA aim
- null-space of *B*
- 3. infinite

 $\mathbf{c}^T \mathbf{B} \mathbf{c} = \lambda \mathbf{c}^T \mathbf{W} \mathbf{c}$ for $\lambda = \infty$ " \Rightarrow " $\mathbf{c}^T \mathbf{W} \mathbf{c} = \mathbf{0}$

- wanted for FLDA, quality depends on c^TBc
- null-space of W
- 4. any value is eigenvalue

$$\mathbf{c}^T \mathbf{B} \mathbf{c} = \lambda \mathbf{c}^T \mathbf{W} \mathbf{c} \quad \forall \lambda \in \mathbb{C} \quad " \Rightarrow " \quad \mathbf{c}^T \mathbf{W} \mathbf{c} = \mathbf{0} = \mathbf{c}^T \mathbf{B} \mathbf{c}$$

- uninteresting for FLDA
- common null-space of **B**, **W**

Introduction
00
000
00
000

Methods
000000
000
000
000

Summary 00

Relation with FLDA

1. finite nonzero

$$(\mathbf{B} - rac{t_{ii}}{s_{ii}}\mathbf{W})\mathbf{c} = 0 \quad \Rightarrow \quad \mathbf{c}^T \mathbf{B} \mathbf{c} = rac{t_{ii}}{s_{ii}}\mathbf{c}^T \mathbf{W} \mathbf{c}$$

- $\lambda = \frac{t_{ii}}{s_{ii}} \dots$ ratio of between- to within-variance
- complement of null-spaces of B, W
- 2. finite zero

$$(\boldsymbol{B} - 0 \cdot \boldsymbol{W})\mathbf{c} = 0 \quad \Rightarrow \quad \mathbf{c}^{\mathsf{T}}\boldsymbol{B}\mathbf{c} = \mathbf{0}$$

- opposite of FLDA aim
- null-space of *B*
- 3. infinite

 $\mathbf{c}^T \mathbf{B} \mathbf{c} = \lambda \mathbf{c}^T \mathbf{W} \mathbf{c}$ for $\lambda = \infty$ " \Rightarrow " $\mathbf{c}^T \mathbf{W} \mathbf{c} = \mathbf{0}$

- wanted for FLDA, quality depends on c^TBc
- null-space of W
- 4. any value is eigenvalue

$$\mathbf{c}^T \mathbf{B} \mathbf{c} = \lambda \mathbf{c}^T \mathbf{W} \mathbf{c} \quad \forall \, \lambda \in \mathbb{C} \quad " \Rightarrow " \quad \mathbf{c}^T \mathbf{W} \mathbf{c} = \mathbf{0} = \mathbf{c}^T \mathbf{B} \mathbf{c}$$

- uninteresting for FLDA
- common null-space of **B**, **W**

Introduction
00
000
00
000

Summary 00

Relation with FLDA

1. finite nonzero

$$(\mathbf{B} - rac{t_{ii}}{s_{ii}}\mathbf{W})\mathbf{c} = 0 \quad \Rightarrow \quad \mathbf{c}^T \mathbf{B} \mathbf{c} = rac{t_{ii}}{s_{ii}}\mathbf{c}^T \mathbf{W} \mathbf{c}$$

- $\lambda = \frac{t_{ii}}{s_{ii}} \dots$ ratio of between- to within-variance
- complement of null-spaces of B, W
- 2. finite zero

$$(\boldsymbol{B} - 0 \cdot \boldsymbol{W})\mathbf{c} = 0 \quad \Rightarrow \quad \mathbf{c}^{\mathsf{T}}\boldsymbol{B}\mathbf{c} = 0$$

- opposite of FLDA aim
- null-space of *B*
- 3. infinite

 $\mathbf{c}^T \mathbf{B} \mathbf{c} = \lambda \mathbf{c}^T \mathbf{W} \mathbf{c}$ for $\lambda = \infty$ " \Rightarrow " $\mathbf{c}^T \mathbf{W} \mathbf{c} = \mathbf{0}$

- wanted for FLDA, quality depends on c^TBc
- null-space of W
- 4. any value is eigenvalue

$$\mathbf{c}^T \mathbf{B} \mathbf{c} = \lambda \mathbf{c}^T \mathbf{W} \mathbf{c} \quad \forall \, \lambda \in \mathbb{C} \quad " \Rightarrow " \quad \mathbf{c}^T \mathbf{W} \mathbf{c} = \mathbf{0} = \mathbf{c}^T \mathbf{B} \mathbf{c}$$

- uninteresting for FLDA
- common null-space of **B**, **W**

Methods
000000
000
000
000

Experiment 0 0000 0 Summary 00

Introduction

- here only methods from R, Matlab
 - linked with LAPACK-libraries
 - all methods are backward stable
- common approaches ... "eliminate" singularity
- slight modification of *W* while preserving crucial information ... regularization
- most methods based on spectral decomposition

 $\boldsymbol{W} = \boldsymbol{Q} \operatorname{diag}(\lambda_1, \dots, \lambda_r, \boldsymbol{0}, \dots, \boldsymbol{0}) \boldsymbol{Q}^T, \quad \boldsymbol{Q}^T \boldsymbol{Q} = \boldsymbol{I},$

where $r = \operatorname{rank}(W)$

Methods • 000000 • 000 • 000 • 000 Experiment 0 0000 0 Summary 00

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

Introduction Motivation Fisher's Criterion The $p \gg n$ case Underlying Linear Algebra

Methods

Pseudoinverse

Epsilon-perturbation Null-space Common Null-space Elimination

Experiment

Summary

Experiment 0 0000 0 Summary 00

Pseudoinverse

- let $\Lambda_r = \text{diag}(\lambda_1, \dots, \lambda_r)$
- partition $\mathbf{Q} = (\mathbf{Q}_r, \mathbf{Q}_N)$, where \mathbf{Q}_N spans null-space of \mathbf{W}
- transformation to standard eigenproblem with

$$\boldsymbol{W}^{+} = \boldsymbol{Q}_{r} \boldsymbol{\Lambda}_{r}^{-1} \boldsymbol{Q}_{r}^{T}$$

Pseudoinverse - properties

- + smaller eigenproblem (dimension r)
- + no need to search for an optimal regularization parameter
- only finite eigenpairs (discards null-space of W)

Experiment 0 0000 0 Summary 00

Pseudoinverse

- let $\Lambda_r = \operatorname{diag}(\lambda_1, \ldots, \lambda_r)$
- partition $\mathbf{Q} = (\mathbf{Q}_r, \mathbf{Q}_N)$, where \mathbf{Q}_N spans null-space of \mathbf{W}
- transformation to standard eigenproblem with

$$\boldsymbol{W}^{+} = \boldsymbol{Q}_{r} \boldsymbol{\Lambda}_{r}^{-1} \boldsymbol{Q}_{r}^{T}$$

Pseudoinverse - properties

- + smaller eigenproblem (dimension *r*)
- + no need to search for an optimal regularization parameter
- only finite eigenpairs (discards null-space of W)

Intro	odu	ctio	r
00			
000	С		
00			
000	С		

Methods

Experiment 0 0000 0 Summary 00

Implementation I - Non-symmetric transformation

solve standard eigenproblem

 $(\boldsymbol{Q}_r\boldsymbol{\Lambda}_r^{-1}\boldsymbol{Q}_r^T\boldsymbol{B}-\lambda\boldsymbol{I})\boldsymbol{c}=\boldsymbol{0}$

- cost of nonsymmetric QR-method: $\pm 25p^3$ flops
- eigenvalues and -vectors can be ill-conditioned
- store several $p \times p$ matrices
- see e. g. [Cheng et al. 1992]

Methods 000000 000 000 Experiment 0 0000 0 Summary 00

Implementation II - Symmetric transformation

solve standard eigenproblem

$$(\mathbf{\Lambda}_r^{-1/2} \mathbf{Q}_r^T \mathbf{B} \mathbf{Q}_r \mathbf{\Lambda}_r^{-1/2} - \lambda \mathbf{I}) \mathbf{c}^* = \mathbf{0},$$

$$\mathbf{c} = rac{\mathbf{Q}_r \mathbf{\Lambda}_r^{1/2} \mathbf{c}^*}{\|\mathbf{Q}_r \mathbf{\Lambda}_r^{1/2} \mathbf{c}^*\|}$$

- cost of symmetric QR-method: ±9p³ flops
- only eigenvectors can be ill-conditioned
- store W, $Q \in \mathbb{R}^{p \times p}$, but transformed eigenproblem is $r \times r$
- see e.g. [Krzanowski et al. 1995]

Intr	odu	ucti	0
00			
00	0		
00			
00	0		

Methods 000000 000 000 000 Experiment 0 0000 0 Summary 00

Implementation III - SVD-implementation I

• exploits the given structure of **B** and **W**, e. g.

$$\boldsymbol{W} = \left(rac{\mathsf{X} - \boldsymbol{G}\boldsymbol{M}}{\sqrt{n-g}}
ight)^T rac{\mathsf{X} - \boldsymbol{G}\boldsymbol{M}}{\sqrt{n-g}} = \boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^T$$

- use SVD instead of eigen decomposition
- cost: ±4p²n flops or ±14pn² flops for "economy size SVD"

Methods 000000 000 000 000 Experiment 0 0000 0

Implementation III - SVD-implementation II

- only eigenvectors can be ill-conditioned
- storage: 1 $n \times p$ matrix, 1 $n \times r$ matrix
- here everywhere economy size SVD
- lda() function in R-environment with default parameters
 - pseudoinverse method
 - SVD implementation

Methods

Experiment 0 0000 0 Summary 00

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

Introduction Motivation Fisher's Criterion The $p \gg n$ case Underlying Linear Algebra

Methods

Pseudoinverse

Epsilon-perturbation

Null-space Common Null-space Elimination

Experiment

Summary

Methods

Experiment 0 0000 0 Summary 00

Epsilon-perturbation I

• consider $\mathbf{Q} \mathbf{\Lambda}_{\varepsilon} \mathbf{Q}^{T}$ instead of $\mathbf{Q}_{r} \mathbf{\Lambda}_{r} \mathbf{Q}_{r}^{T}$,

where
$$\mathbf{\Lambda}_{\varepsilon} = \operatorname{diag}(\lambda_1, \dots, \lambda_r, \varepsilon, \dots, \varepsilon)$$

see e. g. [Cheng et al. - 1992]

• transformation of modified generalized eigenproblem

$$(\boldsymbol{B} - \lambda \boldsymbol{Q} \boldsymbol{\Lambda}_{\varepsilon} \boldsymbol{Q}^{T}) \mathbf{c} = \mathbf{0}$$

Epsilon-perturbation - properties

- + no exclusion of any null-spaces
- large eigenproblem (dimension p)
- need for regularization parameter ε
- too small $\varepsilon \Rightarrow$ ill-conditioned eigenproblem

Methods

Experiment 0 0000 0 Summary 00

Epsilon-perturbation I

• consider $\mathbf{Q} \mathbf{\Lambda}_{\varepsilon} \mathbf{Q}^{T}$ instead of $\mathbf{Q}_{r} \mathbf{\Lambda}_{r} \mathbf{Q}_{r}^{T}$,

where
$$\mathbf{\Lambda}_{\varepsilon} = \operatorname{diag}(\lambda_1, \dots, \lambda_r, \varepsilon, \dots, \varepsilon)$$

see e. g. [Cheng et al. - 1992]

transformation of modified generalized eigenproblem

$$(\boldsymbol{B} - \lambda \boldsymbol{Q} \boldsymbol{\Lambda}_{\varepsilon} \boldsymbol{Q}^{T}) \boldsymbol{c} = \boldsymbol{0}$$

Epsilon-perturbation - properties

- + no exclusion of any null-spaces
- large eigenproblem (dimension p)
- need for regularization parameter ε
- too small $\varepsilon \Rightarrow$ ill-conditioned eigenproblem

Methods

Experiment 0 0000 0 Summary 00

Epsilon-perturbation II

- nonsymmetric & symmetric implementations: as before, only forming transformed eigenproblem is little more expensive
- SVD implementation: as before, BUT
 - store *p* × *p* matrix *Q*
 - cannot exploit economy SVD: ±4p²n

Methods

Experiment 0 0000 0 Summary 00

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

Introduction Motivation Fisher's Criterion The $p \gg n$ case Underlying Linear Algebra

Methods

Pseudoinverse Epsilon-perturbation

Null-space

Common Null-space Elimination

Experiment

Summary

Experiment 0 0000 0 Summary 00

Null-space I

- vectors **c** in the null-space of **W** satisfy $\mathbf{c}^T \mathbf{W} \mathbf{c} = 0$
- if $\mathbf{c}^T \mathbf{B} \mathbf{c}$ is large \Rightarrow can be used for projection
- find largest eigenvalues of **B** in null-space of **W** by solving

$(\boldsymbol{Q}_N^{\mathcal{T}} \boldsymbol{B} \boldsymbol{Q}_N - \boldsymbol{I}) \boldsymbol{c} = 0$

see e. g. [Guo et al. - 2003]

The Null-space method - properties

- + does not need a regularization parameter
- solves an eigenproblem of dimension p r
- discards finite eigenvalues of original problem

Experiment 0 0000 0 Summary 00

Null-space I

- vectors **c** in the null-space of **W** satisfy $\mathbf{c}^T \mathbf{W} \mathbf{c} = 0$
- if $\mathbf{c}^T \mathbf{B} \mathbf{c}$ is large \Rightarrow can be used for projection
- find largest eigenvalues of **B** in null-space of **W** by solving

$$(\boldsymbol{Q}_N^T \boldsymbol{B} \boldsymbol{Q}_N - \boldsymbol{I}) \boldsymbol{c} = 0$$

see e. g. [Guo et al. - 2003]

The Null-space method - properties

- + does not need a regularization parameter
- solves an eigenproblem of dimension p r
- discards finite eigenvalues of original problem

Experiment 0 0000 0 Summary 00

Null-space II

- symmetric implementation: as for Epsilon perturbation, but storage and cost a little cheaper
- SVD
 - storage: 1 $p \times (p r)$ matrix
 - cost of 1 full SVD: 4p²n

Experiment 0 0000 0 Summary 00

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction Motivation Fisher's Criterion The $p \gg n$ case Underlying Linear Algebra

Methods

Pseudoinverse Epsilon-perturbation Null-space Common Null-space Elimination

Experiment

Summary

Common Null-space Elimination I

- ... numerical analysists recommend [Parlett 1998]
- common null-space of $\boldsymbol{B}, \boldsymbol{W} \Rightarrow$ ill-posed eigenproblem
- project onto complement of common null-space
- $\boldsymbol{B}x = 0 \land \boldsymbol{W}x = 0 \Leftrightarrow (\boldsymbol{B} + \boldsymbol{W})x = 0,$ because $\boldsymbol{B}, \boldsymbol{W} \ge 0$
- compute spectral decomposition **B** + **W**
- let P contain eigenvectors for non-zero eigenvalues
- solve the projected problem

 $(\mathbf{P}^{\mathsf{T}}\mathbf{B}\mathbf{P} - \lambda \mathbf{P}^{\mathsf{T}}\mathbf{W}\mathbf{P})\mathbf{c}^{*} = 0, \quad \mathbf{c} = \mathbf{P}\mathbf{c}^{*}$

vector selection by considering c^TBc, c^TWc

Common Null-space Elimination II

Common Null-space Elimination - properties

- + problem smaller than $n \ll p$
- + no exclusion of null-space of W

Implementation with QZ:

- storage: only $p \times n$ matrices
- cost: order $pn^2 + n^3$
- both eigenvalues and -vectors can be ill-conditioned

Common Null-space Elimination II

Common Null-space Elimination - properties

- + problem smaller than $n \ll p$
- + no exclusion of null-space of W

Implementation with QZ:

- storage: only $p \times n$ matrices
- cost: order $pn^2 + n^3$
- both eigenvalues and -vectors can be ill-conditioned

Methods 000000 000 000 000 Experiment

Summary 00

Numerical Experiment

- protein fold classification problem
- sample size *n* = 268
 - 143 in training set
 - 125 in test set
- p = 400 predictors
- *K* = 42 classes

Introduction
00
000
00
000

Methods 000000 000 000 000 Summary 00

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Pseudoinverse

blue curve: $\mathbf{c}^T \mathbf{B} \mathbf{c}$, red curve: $\mathbf{c}^T \mathbf{W} \mathbf{c}$

Introduction
00
000
00
000

Vethods Experiment Summary

Epsilon-perturbation

blue curve: $\mathbf{c}^T \mathbf{B} \mathbf{c}$, red curve: $\mathbf{c}^T \mathbf{W} \mathbf{c}$

Introduction	Methods	Experiment	Summa
00	000000	0	00
000	000	0000	
00	000	0	
000	000		

Null-Space

blue curve: $\mathbf{c}^T \mathbf{B} \mathbf{c}$, red curve: $\mathbf{c}^T \mathbf{W} \mathbf{c}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introducti
00
000
00
000

Methods 000000 000 000 000 Experiment 0000 Summary 00

Common Null-Space Elimination

blue curve: $\mathbf{c}^T \mathbf{B} \mathbf{c}$, red curve: $\mathbf{c}^T \mathbf{W} \mathbf{c}$

Introduction
00
000
00
000

Methods 000000 000 000 000 Experiment 0 0000 Summary 00

Error Rates of Classifi ers

blue curve: Pseudoinverse, green curve: both Epsilon and Null-space, red curve: Common Null-space elimination

- two middle methods: error rate of 24%
- can compete with Support Vector Machine strategy 23.2% (other over 28.8%, see e. g. [Markowetz et al. - 2003])

Methods 000000 000 000 000 Experiment 0 0000 0 Summary •0

Conclusions

- Generalized Schur decomposition as a theoretical tool for better understanding of FLDA
 - covers all proposed methods
- Common-null space elimination
 - seems most appropriate, not only theoretically, but also experimentally and numerically
- in addition we found...
 - pseudoinverse method (R) for p ≫ n needs not be the best at all!
 - exploitation of structure with SVD

Methods 000000 000 000 000 Experiment 0 0000 0 Summary

Open Questions & Future work

- choice and influence of regularization parameter in perturbation technique
- main challenge for nearby future is extension to very large problems
 - sparsity!!!
 - exploitation of special structure
- generalization to nonlinear cases
 - kernels method for Fisher [Baudat, Anouar 2000]

References

G. Baudat and F. Anouar:

Generalized discriminant analysis using a kernel approach. *Neural Computation*, 12(10):2385–404(1), 2000.

Y. Cheng, Y. Zhuang and J. Yang:

Optimal Fisher discriminant analysis using the rank decomposition. *Pattern Recognition*, 25(1):101–111, 1992.

Y.-F. Guo, S.-J. Li, J.-Y. Yang, T.-T. Shu and L.-D. Wu:

A generalized Foley-Sammon transform based on generalized fi sher discriminant criterion and its application to face recognition.

Pattern Recognition Letters, 24:147-158, 2003.

W. J. Krzanowski, P. Jonathan, W .V .McCarthy and M .R. Thomas:

Discriminant analysis with singular covariance matrices: methods and applications to spectroscopic data. Applied Statistics, 44:101–115, 1995.

F. Markowetz, L. Edler and M. Vingron:

Support Vector Machines for Protein Fold Class Prediction. Biometrical Journal, 45(3):377–389, 2003.

C. B. Moler and G. W. Stewart:

An algorithm for generalized matrix eigenvalue problems. SIAM Journal on Numerical Analysis, 10:241–256, 1973.

B. N. Parlett:

The symmetric Eigenvalue Problem.

SIAM, Philadelphia, 1998.

Thank you for your attention!

This work is supported partly by the Program Information Society under project 1ET400300415 and the MSMT CR Project LC536

Generalized Schur Decomposition (by QZ)

Appendix

blue curve: diagonal of T(B), red curve: diagonal of S(W)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▼ ◆