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1. Introduction to preconditioner updates

Consider a sequence of linear systems

A(i)x = b(i), i = 1, . . . , (1)

where A(i) ∈ IRn×n are nonsingular sparse matrices; b(i) ∈ IRn.

Applications: Computational fluid dynamics, structural mechan-

ics, numerical optimization, non-PDE problems.

Classical example: A system of nonlinear equations F(x) = 0

for F : IRn → IRn solved by a Newton or Broyden-type method

leading to

J(xi)(xi+1 − xi) = −F(xi), i = 1, . . . ,

where J(xi) is the Jacobian evaluated in the current iteration xi

or its approximation.
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There is a strong need for reduction of costs by sharing

some of the computational effort among the subsequent

linear systems.

Some options to reduce overall costs:

• Modify Newton’s method by skipping some Jacobian evalua-

tions: Shamanskii combination of Newton’s method and the

Newton-chord method. Much weaker nonlinear convergence

properties than the standard Newton’s method.

• The sequence of linear systems must often be preconditioned;

computing preconditioners M(1),M(2), . . . for individual sys-

tems separately, may be very expensive. A remedy is freezing

the preconditioner: Using the same preconditioner for a se-

quence of linear systems (see, e.g [Brown, Saad - 1990]).
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This approach is very natural in the context of a matrix-

free environment, where the system matrices A(i) may be

available only in the form of matrix-vector products, see also

[Knoll, Keyes - 2004].

Freezing the preconditioner need not be enough. We may

reuse some additional information from the linear system

A(1)x = b(1). For example:

• In the Newton-Krylov framework: Recycle Krylov subspaces

among systems of a sequence, see e.g. [Loghin, Ruiz, Touhami-

2004], [Parks, de Sturler, Mackey, Johnson, Maiti - 2004].

• Many interesting algorithms were proposed for exact updates

of decompositions. Recent sparse updates [Davis, Hager -

1999, 2001, 2005] replace in some cases classical dense up-

dates from, e.g., [Gill, Murray, Saunders - 1975].



• There is some recent work in approximate updates as well.

Approximate diagonal updates of approximate inverse pre-

conditioners for solving parabolic PDEs were proposed in

[Benzi, Bertaccini - 2003], see also [Bertaccini - 2004]. A

straightforward approximate rank one update for a quasi-

Newton method in the SPD case is described in [Morales,

Nocedal - 2000], [Bergamaschi, Bru, Martinez, Putti - 2001].

We present new approaches to approximate updates of factor-

ized, and general nonsymmetric preconditioners which may be

useful in solving subsequent linear systems. We do not con-

fine ourselves to particular classes of linear solvers (e.g. Krylov

subspace methods).



We address the following 2 problems:

• How can we update, in theory, a preconditioner in such a way

that the updated preconditioner is likely to be as powerful as

the original one?

• How can we approximate, in practice, such an update in order

to obtain a preconditioner that is inexpensive to compute and

to apply?
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Consider two linear systems denoted by

Ax = b and A+x+ = b+.

Denote the difference matrix A−A+ by B.

Let M be a preconditioner approximating A.

The quality of the preconditioner M can be expressed by

A−M (2)

in some norm or by a norm of one of the matrices

I−M−1A or I−AM−1 (3)

if we consider preconditioning from the left or right, respectively

(see, e.g. [Benzi, Bertaccini - 2003]). While the norm of the

matrix (2) expresses accuracy of the preconditioner, the norms

of the matrices (3) relate to its stability [Chow, Saad - 1997],

see also [Benzi, Haws, Tůma - 2000].
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We have

‖A−M‖ = ‖A−M + A+ −A+‖ = ‖A+ − (M−B)‖,

hence M+ ≡ M − B is an updated preconditioner for A+ of the

same “level” of accuracy as M is for A.

This “ideal” updated preconditioner cannot be used, in general,

in practice since multiplication of vectors with (M − B)−1 may

be too expensive.

There are ways, however, to approximate multiplication with

(M−B)−1, as we will now show.
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2. Proposed sparse preconditioner updates

Assume M = LDU ≈ A, where L and U are lower, resp. upper

triangular and have unit main diagonal.

The derivation of some of our updates is based on the as-

sumption that the entries of L and U decay when moving away

from the main diagonal, see e.g. [Benzi, Tůma - 2000], [Benzi,

Bertaccini - 2003]. Sufficient diagonal dominance may also be

imposed if A contains a strong transversal [Olschowka, Neumaier

- 1996], [Duff, Koster - 1999, 2001] such that its entries can be

permuted to the main diagonal. Thus we assume more or less

L ≈ I ≈ U.
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We can approximate (M−B)−1, if it is nonsingular, as

(M−B)−1 =
(

L(D− L−1BU−1)U
)−1

≈ U−1(D−B)−1L−1,

provided D − B is nonsingular. Denote by D−B a nonsingular

approximation of D−B that can be inverted inexpensively. Then

define a preconditioner M+ as

M+ = L(D−B)U. (4)

The accuracy of this preconditioner can be significantly higher

than the accuracy of the frozen preconditioner M = LDU for

A+:

Lemma 1. Let ||A− LDU|| = ε||A|| < ||B||. Then

||A+ −M+|| ≤ ||A+ −LDU||
||L(D−D−B)U−B|| + ε||A||

||B|| − ε||A||
,
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with

||L(D −D−B)U−B|| + ε||A||

||B|| − ε||A||
≤

‖L‖ ‖D−B −D−B‖ ‖U‖ + ||L− I|| ‖BU‖ + ‖B‖ ||U− I|| + ε||A||

||B|| − ε||A||
.

In the symmetric case, the preconditioner M+ changes to M+ =

L(D −B)LT , hence symmetry is preserved. In the nonsymmetric

case we can assume that only one of the two factors L,U is close

to the identity matrix, instead of both. We can approximate as

(M−B)−1 =
(

L(DU−L−1B)
)−1

≈ (DU−B)−1L−1,

if DU − B is nonsingular. If DU−B denotes a nonsingular and

easily invertible approximation of DU − B, then we define M+

by



M+ = L(DU−B). (5)

Lemma 2. Let ||A−LDU|| = ε||A|| < ||B||. Then the precondi-

tioner from (5) satisfies

||A+ −M+|| ≤ ||A+ −LDU||
||L(DU−DU−B) −B|| + ε||A||

||B|| − ε||A||

≤ ||A+ −LDU|| ·
‖L‖ ‖DU−B−DU−B‖ + ||L− I|| ‖B‖ + ε||A||

||B|| − ε||A||
.

Next we propose approximations of DU − B. All techniques we

treat can be analogously formulated for updates of the form

(LD−B)U. The introduced algorithms can be used to approx-

imate the matrix D−B as well.
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A very simple choice of DU−B for M+ in (5) is

DU−B ≡ triu(DU−B), M+ = L · triu(DU−B), (6)

where triu denotes the upper triangle (including the main diag-

onal). From Lemma 2, assuming L ≈ I, M+ is accurate if the

upper triangle of B contains an important part of the whole dif-

ference matrix B. This seems to be the case if the difference

matrix is rather nonsymmetric as in upwind/downwind perturba-

tions in nonlinear convection-diffusion problems.

We might consider ways to improve efficiency of the backward

solve by sparsification if the factor U is rather dense. Denoting

by the subindices [i1, . . . , il] the l upper subdiagonals that start

in columns i1, . . . , il (and the main diagonal by the subindex 0)

we considered also choices of the form

DU−B ≡ (DU−B)[i1,...,il]
, M+ = L · (DU−B)[i1,...,il]

. (7)
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In particular, if the entries of B dominate those of DU (in mag-
nitude) we may choose only indices corresponding to upper sub-
diagonals of B (the difference matrix is sparse).

Further simplification eventually leads to

DU−B ≡ diag(DU−B), M+ = L · diag(DU−B) (8)

which still yields a useful update in some applications and which
is a straightforward generalization of the approach from [Benzi,
Bertaccini - 2003] for solving a more general problem.

Example: The two-dimensional nonlinear convection-diffusion
problem [Kelley - 1995]

∆u − Ru∇u = 2000x(1 − x)y(1 − y), R = 50, (9)

on the unit square, discretized by 5-point finite differences on a
uniform 70x70 grid with as initial approximation the discretiza-
tion of u0(x, y) = 0.



A/M LDU L · triu(DU−B)

A(1) / M(1) 21 21

A(2) / M(1) 29 25

A(3) / M(1) 39 27

A(4) / M(1) 52 25

A(5) / M(1) 77 25

A(6) / M(1) 80 26

A(7) / M(1) 102 26

A(8) / M(1) 102 27

A(9) / M(1) 98 27

A(10) / M(1) 101 26

A(11) / M(1) 99 26

A(1)−(11) / M(1)−(11) 21 ± 5 —

Numbers of BiCGSTAB iterations for solving preconditioned linear systems

of a nonlinear convection-diffusion problem with no updates and triangular

updates, respectively. M(1) = ILUT(0.1,5).
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The presented strategies are strongly based on confining the

update to the upper (or, equivalently, lower) triangle. Whereas

numerical experiments seem to indicate this makes sense, there

may be applications where it is necessary to take into account

both triangles of the difference matrix.

Here we introduce a strategy to approximate DU−B by a general

non-triangular but easily invertible matrix. Denote the matrix

diag(DU−B) by D̃, and D̃
−1

(D̃−DU−B) denote by B̃. Then

DU−B = D̃(I− B̃). (10)

First consider the case when B̃ = βeie
T
j , for some 1 ≤ i, j ≤ n, i 6=

j. Then we get

(I− B̃)−1 = I +
β

1 − βeT
j ei

eie
T
j = I + βeie

T
j , (11)
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a Gauss-Jordan transformation [Golub, van Loan - 1996] with
fill-in free inverse.

Idea: Approximate DU−B by a product of Gauss-Jordan trans-
formations.

We achieve this as follows: DU−B will consist of the main
diagonal plus some rows of DU−B:

DU−B = D̃(I− B̃) = D̃(I−
K
∑

j=1

eij b̃ij∗)

= D̃(I− ei1b̃i1∗)(I− ei2b̃i2∗) . . . (I− eiK b̃iK∗), (12)

where b̃j∗ = eT
j B̃.

If row(i) = {k|i 6= k∧ b̃ik 6= 0}, then the number of operations for
multiplying a vector by a matrix of the form (12) or its inverse
is at most 2

∑K
j=1 |row(ij)| + n.



Clearly,

(I− ei1b̃i1∗)(I − ei2b̃i2∗) = (I− ei1b̃i1∗ − ei2b̃i2∗ + ei1b̃i1∗ · ei2b̃i2∗)

= (I− ei1b̃i1∗ − ei2b̃i2∗) if and only if ei1b̃i1∗ · ei2b̃i2∗ = 0.

Theorem 1: Let I− B̃ = I−
∑

jl:l=1,...,K ejlb̃jl∗. Then

I− B̃ = (I− ei1b̃i1∗)(I − ei2b̃i2∗) . . . (I− eiK b̃iK∗) (13)

if and only if

il 6∈
l−1
⋃

k=1

row(ik) for 2 ≤ l ≤ K (14)

for all i1, . . . , iK such that {j1, . . . , jK} = {i1, . . . , iK}.

Example: A unit lower triangular matrix I− B̃ can be written as

(I− e2b̃2∗)(I− e3b̃3∗)(I− e4b̃4∗) . . . (I− en−1b̃n−1∗)(I− enb̃n∗).
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In case of a unit lower triangular matrix I − B̃ with k additional

subsequent subdiagonals starting in the lth column a product of

Gauss-Jordan transformations with a fill-in free inverse can cover

only l/(2l + k − 1) percent of the rows.

Changes in a sequence of matrices restricted to a couple of

diagonals are rather frequent.

A simple greedy procedure based on sparsification and Theorem

1 is the following algorithm.



Algorithm to find rows il of DU−B such that it is approx-

imated by a product of Gauss-Jordan transformations.

1. set R = {1, . . . , n}, l = 0

2. for k = 1, . . . , n do

3. set row(k) = {i|i 6= k ∧ |(DU−B)ki| > tol}

4. set pk =
∑

j∈row(k) |(DU−B)kj|

5. end for

6. while R 6= 0 do

7. choose a row i ∈ R maximizing pi −
∑

j∈R∩row(i) pj

8. set l = l + 1, il = i

9. set R = R\{row(il) ∪ il}

10. end while
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A/M LDU L · GJ(DU−B) L · GJ(D− B) · U
A1 / M1 5 5 5
A2 / M1 31 17 36
A3 / M1 51 18 40
A4 / M1 71 21 51
A5 / M1 91 21 59
A6 / M1 97 23 63
A7 / M1 100 21 64
A8 / M1 97 23 70
A9 / M1 103 22 65
A10 / M1 100 22 76
A11 / M1 99 22 71

Numbers of BiCGSTAB iterations for the preconditioned nonlinear convection-

diffusion problem with preconditioner updated by GJ updates applied to ap-

proximate (D− B) and (DU−B), respectively.

Uniform 50 x 50 grid, M(1) = ILU(10−3),

‖I− L‖

‖L‖
= 0.434 =

‖I −U‖

‖U‖
.



A / M ILU(10−1) ILU(10−2)
LDU LGJ(DU−B) Ltriu(DU−B) LDU LGJ(DU−B) Ltriu(DU−B)

A1 / M1 24 24 24 13 13 13
A2 / M1 27 26 24 32 20 17
A3 / M1 38 27 21 58 23 17
A4 / M1 47 25 23 89 24 17
A5 / M1 52 22 23 127 23 17
A6 / M1 58 21 22 131 24 18
A7 / M1 68 22 23 182 25 18
A8 / M1 91 24 24 172 26 19
A9 / M1 70 20 23 157 22 18
A10 / M1 68 22 24 166 24 18
A11 / M1 76 24 25 163 24 19

Numbers of BiCGSTAB iterations for the preconditioned nonlinear convection-diffusion prob-

lem with preconditioner updated by Gauss-Jordan updates applied to (DU−B) and triangular

updates, respectively

The sizes of the factors L and U are for the drop tolerances 10−3, 10−2 and

10−1 equal to approximately 35000, 12000 and 5000, respectively. The sizes

of the GJ updates are in the range < 6700,7800 > for all tolerances.



3. Coping with possible instabilities

An unlucky choice of DU−B may be useless for 2 reasons:

• The choice is (close to) singular.

• The decomposition L(DU−B) is unstable. For triangular

updates this may happen whenever the off-diagonal entries

of DU−B are significantly larger than diagonal entries.

Applying stabilization strategies to the initial system, such as

finding a maximal transversal [Benzi, Haws, Tůma - 2000], can-

not guarantee to overcome the instability encountered here.
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Remedy: Consider the “ideal” update M+ = LDU−B. As LDU

approximates A, we have

M+ = LDU−B ≈ A−B = A+.

We may expect M+ is far from being singular and it inherits

diagonal dominance of A+.

Modify L(DU−B) as

M+ = L (DU−L−1B), (15)

where (DU− L−1B) is close to (DU− L−1B).

Possible choices of (DU− L−1B):



• (DU− L−1B) ≡ DU− diag(||Le1||, . . . , ||Len||)−1triu(B).

• (DU− L−1B) ≡ DU − triu(L−1B), seems expensive at first

sight due to the product L−1B. But exploiting the sparsity

of B, the triangularity of L and the fact that we need only

one triangle of the product, computing triu(L−1B) can be

done effectively.

• DU−L−1B ≡ (DU − L−1B)[i1,...,il]
, for a small number of

positions i1 to il. It is easy to see that when the positions are

chosen to correspond to the nonzero upper subdiagonals of

B, then the computation of this approximation of DU−L−1B

is comparable to executing one matvec with B.
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• Write (DU − L−1B)[i1,...,il]
as a product of Gauss-Jordan

transformations with the algorithm presented before (we al-

low negative indexes to denote lower subdiagonals).

Example: A finite difference analogue of the porous media non-

linear equation [Eisenstat, Walker - 1996] solved over the unit

square with zero Dirichlet boundary conditions

∇u2 + R

(

∂u3

∂x
+ f(x, y)

)

= 0. (16)

The function f(x, y) is evaluated in order to have the solution

u = x(x−1)y(y−1). The initial approximation is a discretization

of u0(x, y) = 1 − xy, R = 50. We use a uniform 50 x 50 grid.



Update type its

DU− diag(L−1B) ∞

DU− triu(L−1B) 45

(DU− L−1B)[0,1,50] 48

(DU−L−1B)[0,1] 78

(DU− L−1B)[0] 101

GJ(DU−L−1B)[−1:1,50] 50

GJ(DU−L−1B)[−50,−1:1,50] 44

GJ(DU− L−1B)[−50,−10:10,50] 43

Numbers of iterations for solving the 10th system for different variants of an update of the

preconditioner for A(1) based on triangular and Gauss-Jordan transformations.

The factorization has a much larger number of nonzeros (± 100 000) than

the original matrix (12300). The size of all the GJ updates is around 7200.
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A/ M LDU LGJ(DU− L−1B)[−50,−1:1,50] L(DU− L−1B)[0,1,50]

A(1) / M(1) 3 3 3

A(2) / M(1) 7 8 5

A(3) / M(1) 10 22 11

A(4) / M(1) 16 14 13

A(5) / M(1) 26 18 17

A(6) / M(1) 35 21 20

A(7) / M(1) 51 29 25

A(8) / M(1) 51 32 33

A(9) / M(1) ∞ 50 43

A(10) / M(1) ∞ 45 49

A(11) / M(1) ∞ 40 39

A(12) / M(1) ∞ 44 42

A(13) / M(1) ∞ 39 44

A(14) / M(1) ∞ 44 44

A(15) / M(1) ∞ 39 43

A(16) / M(1) ∞ 43 48

Numbers of BiCGSTAB iterations
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Related/Future issues:

• We performed also some experiments where our nonlinear

problems where discretized by upwind schemes, leading to

triangular difference matrices. The results for solving the

linear problems were rather good, but we typically needed

more nonlinear iterations.

• An interesting problem is to choose triangular updates which

correspond to the sparsity pattern and sizes of entries of

the difference matrix differently for each system. A closely

related problem is to find a nonsymmetric permutation which

would transform the system matrices into a form which is

more suitable for our updates.
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More details can be found in ,,Preconditioner updates for solv-

ing sequences of large and sparse nonsymmetric linear systems”

[Duintjer Tebbens, Tůma - submitted to SISC in 2005].

Thank you for your attention.

This work is supported by the Program Information Society under

project 1ET400300415.

21


