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1. Problem formulation

Consider an ill-posed linear system

Ax ≈ b, A ∈ Rn×m, b ∈ Rn,

with a noise contaminated right-hand side

b = bexact + bnoise 6= 0 ∈ Rn , ‖ bexact ‖ À ‖ bnoise ‖ .

Possible difficulties:

• the noise component bnoise is unknown;

• the rank of A is not well defined (singular values of A decay
gradually to zero);

• the solution is sensitive on small perturbations in data.
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Denote l = rank(A). Consider the singular value decomposition

A = Ũ Σ̃ Ṽ T =
l∑

i=1

ũiσ̃iṽ
T
i ,

Ũ = [ũ1, . . . , ũl], Ṽ = [ṽ1, . . . , ṽl], Σ̃ = diag(σ̃1, . . . , σ̃l) .

The least squares method (LS) minimizes ‖b−Ax‖ and

xLS =
l∑

i=1

ũT
i b

σ̃i
ṽi

=
l∑

i=1

ũT
i bexact

σ̃i
ṽi +

l∑

i=1

ũT
i bnoise

σ̃i
ṽi .

Thus components of the solution corresponding to small singular val-
ues may be dominated by errors in b, the solution is meaningless.
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Regularization methods are used to suppress the effect of errors in

the data and extract the essential information about the system, e.g.,

• truncated SVD, truncated total least squares, Tikhonov regu-

larization, see [Hansen, O’Leary – 97], [Fierro, Golub, Hansen,

O’Leary – 97], [Hansen - 98], [Golub, Hansen, O’Leary - 99],

[Sima, Van Huffel, Golub - 04], [Kilmer, Hansen, Espanol - 06],

. . .

• methods based on iterative Golub-Kahan bidiagonalization as

LSQR, hybrid methods, see [Paige, Saunders – 82], [Bjorck – 96],

[Hansen – 97], [Hanke – 01], . . .
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2. Regularization by Golub-Kahan bidiagonalization

Consider Golub-Kahan bidiagonalization (GK) of A in the form

w0 = 0 , s1 = b / β1 , where β1 = ‖b‖2 ,

for j = 1, 2, 3, . . .

αj wj = AT sj − βj wj−1 , ‖wj‖ = 1 ,

βj+1 sj+1 = A wj − αj sj , ‖sj+1‖ = 1 ,

end .

Denote Sk = [u1, . . . , sk], Wk = [w1, . . . , wk] resulting matrices with
orthonormal columns and

Lk =




α1
β2 α2

. . . . . .
βk αk


 , Lk+ =

[
Lk

eT
k βk+1

]
.
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Regularization methods based on GK compute the solution in two

steps. First the problem is projected on the Krylov subspace using k

steps of bidiagonalization, i.e.

A Wk = Sk+1 Lk+ .

Then an inner regularization is applied to the projected problem

A x ≈ b −→ Lk+ y ≈ β1 e1 .

When to stop the bidiagonalization?
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Core reduction:

From the core theory [Paige, Strakoš – 06] it follows that there exists

a fundamental decomposition

PT [ b |A Q ] =

[
b1 A11 0
0 0 A22

]
, PT = P−1 , QT = Q−1 ,

yielding a subproblem

A11 x1 ≈ b1 ,

which contains all necessary and sufficient information to solve the

original problem,

x = Q

[
x1
0

]
.
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Computation of the core problem:

If the GK bidiagonalization of A with u1 ≡ b/β1 , β1 ≡ ‖b‖ stops with

• βp+1 = 0 or p = n, then ST
p [b, AWp] = [β1e1, Lp] ≡ [b1, A11] and

Lp y = β1 e1

is the core problem;

• αp+1 = 0 or p = m, then ST
p+1 [b, AWp] = [β1e1, Lp+] ≡ [b1, A11]

and

Lp+ y ≈ β1 e1

is the core problem.
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In exact arithmetic
GK stops with βp+1 = 0 or αp+1 = 0. Then the bidiagonal problem

Lp y = β1 e1 or Lp+ y ≈ β1 e1

contains all necessary and sufficient information to solve the original
problem.

In floating-point arithmetic
we have to stop GK by using some stopping criteria. We can view
the stopping as a perturbation of the bidiagonal matrix

βk+1 −→ β̃k+1 = 0 or αk+1 −→ α̃k+1 = 0 ,

which yields the modified matrix L̃k or L̃k+, respectively.

How to define the stopping criteria for GK if the ill-posed problem
with a noisy right-hand side is considered?
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3. How to identify the noise

GK starts with the normalized noisy right-hand side s1 = b / ‖b‖ , thus
vectors sj has to contain some information about the noise.

Our idea is: An information about the noise level can be
obtained by Fourier analysis of the vectors sj generated by GK.

We used two different Fourier basis:

• basis of the left singular vectors ũj of A (basis useful for the theo-
retical analysis but not in practical computations);

• trigonometric basis (well applicable in practical computations, e.g.,
the fast Fourier transform algorithm – FFT).
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An example:

Consider the problem SHAW(400) from [Hansen, RTools] with a noisy

right-hand side (the noise was artificially added)

46.6225 = ‖ bexact ‖ À ‖ bnoise ‖ = 10−12 .

We study the noise-contaminated vectors sj in the noise-free basis

Ũ = [ũ1, . . . , ũn] and in the frequency domain,

( ŨT sj ) and F [ sj ] , j = 1, 2, . . . ,

where F denotes the FFT operator.
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The vector s1 is dominated by

low frequencies, thus it has

dominant projection in the direc-

tion of the left singular vector ũ1

and possibly several next vectors.

Analogously s2, s3, ... .
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For some index j = k the low frequencies information is projected

out from sk by orthogonalization against the previous vectors sj ,

j = 1 , 2 , 3 , . . . , k − 1 , and the noise is revealed.
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Vector s18 is fully dominated by noise –

the noise level is revealed.

Now we get explicit information when the noise begins to cover useful

information in the data. The solution of the original problem A x ≈ b

computed through the bidiagonal problem

Lj+ y ≈ β1 e1 ,

for j > k = 18 can be significantly polluted by the noise.

(In the 19th step, the noise is partially projected out because vectors

sj has to be mutually orthonormal.)
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4. Summary and future work

Information about the noise can be obtained directly from the Golub-

Kahan bidiagonalization.

Opened questions:

• How to implement this idea as a stopping criterion in hybrid

methods?

• Relationship to common stopping criteria in hybrid methods?
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Thank you for your attention!
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