Golub-Kahan iterative bidiagonalization
and stopping criteria in
IHl-posed problems

Iveta Hnétynkova ***, Martin PleSinger *, Zdenék Strakos ***

* Academy of Sciences of the Czech republic, Institute of Computer
Science, Prague

** Charles University, Faculty of Mathematics and Physics,
Department of Numerical Mathematics, Prague



Outline

. Problem formulation

. Regularization by Golub-Kahan bidiagonalization
. How to identify the noise

. Summary and future work



1. Problem formulation

Consider an ill-posed linear system

Ax ~ b, A € RY*™, b e R",

with a noise contaminated right-hand side

h — bea:act _|_ bnoise # 0 € Rn, || be:cact ” > H bnoise ||

Possible difficulties:

e the noise component b™°%€ is yunknown:

e the rank of A is not well defined (singular values of A decay
gradually to zero);

e the solution is sensitive on small perturbations in data.



Denote | = rank(A). Consider the singular value decomposition

U= lay,....,%], V =|[v1,...,9], X = diag(gy,...,5;).

The least squares method (LS) minimizes ||b — Ax|| and

Loz

xLS — Z

i—=1 91

v;

[ {Lszewact ~Tbn07,se _
>, U + Z
i=1 Oi
Thus components of the solution correspondlng to small singular val-
ues may be dominated by errors in b, the solution is meaningless.
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Regularization methods are used to suppress the effect of errors in
the data and extract the essential information about the system, e.qg.,

e truncated SVD, truncated total least squares, Tikhonov regu-
larization, see [Hansen, O'Leary — 97], [Fierro, Golub, Hansen,
O'Leary — 97], [Hansen - 98], [Golub, Hansen, O’'Leary - 99],
[Sima, Van Huffel, Golub - 04], [Kilmer, Hansen, Espanol - 06],

e methods based on iterative Golub-Kahan bidiagonalization as
LSQR, hybrid methods, see [Paige, Saunders — 82], [Bjorck — 96],
[Hansen — 97], [Hanke — 01], ...



2. Regularization by Golub-Kahan bidiagonalization
Consider Golub-Kahan bidiagonalization (GK) of A in the form

wo — 07 §1 — b//Bla where 51 — ||b||27
for y=1,2,3,...

ajw; = Al's; — Bjw;_q,  Jwll =1,
Bi+1sj41 = Awj —ajsj,  sjpall =1,
end .
Denote S, = [u1,...,st], Wi = [w1,...,wg] resulting matrices with
orthonormal columns and
o _
B2 a2 Ly, ]
L, = Ly = .
g e gl et Bret1
! Br ap |




Regularization methods based on GK compute the solution in two
steps. First the problem is projected on the Krylov subspace using k

steps of bidiagonalization, i.e.

Then an inner regularization is applied to the projected problem

Ar =~ b — Lk—|—y ~ 6181.

When to stop the bidiagonalization?



Core reduction:

From the core theory [Paige, Strakos — 06] it follows that there exists
a fundamental decomposition

T _ | b1 A11] O T _ -1 T _ A—1

yielding a subproblem
A1 = by,

which contains all necessary and sufficient information to solve the
original problem,



Computation of the core problem:

If the GK bidiagonalization of A with w1 =b/31, 61 = ||b|| stops with

o B,41=0o0rp=n, then SI'[b,AW,] = [Bie1,Lp] = [b1,A11] and

Lpy = B1e

is the core problem:;

e app 1 =00rp=m,then S/, [b,AWp] = [Bre1,Lypq] = [b1, A11]
and

L,yry =~ Prex

IS the core problem.



In exact arithmetic
GK stops with 5,417 = 0 or a4 1 = 0. Then the bidiagonal problem

Lpy = Bre1 or Lty = Bie]
contains all necessary and sufficient information to solve the original
problem.

In floating-point arithmetic
we have to stop GK by using some stopping criteria. We can view
the stopping as a perturbation of the bidiagonal matrix

Brt1 — Brg1 =0 or app; — dpy1 =0,
which yields the modified matrix Ly or Ly, respectively.

How to define the stopping criteria for GK if the ill-posed problem
with a noisy right-hand side is considered?
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3. How to identify the noise

GK starts with the normalized noisy right-hand side s; = b/ ||b||, thus
vectors S has to contain some information about the noise.

Our idea is: An information about the noise level can be
obtained by Fourier analysis of the vectors Sj generated by GK.

We used two different Fourier basis:

e basis of the left singular vectors u; of A (basis useful for the theo-
retical analysis but not in practical computations);

e trigonometric basis (well applicable in practical computations, e.g.,
the fast Fourier transform algorithm — FFT).
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An example:

Consider the problem SHAW(400) from [Hansen, RTools] with a noisy
right-hand side (the noise was artificially added)

46.6225 — ” bea:act H > || bnoise H — 10—12 .

We study the noise-contaminated vectors S in the noise-free basis
U = [aq,...,an] and in the frequency domain,

(01's;) and F[s;], i=1,2 ...
where F' denotes the FFT operator.
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The vector s; is dominated by
low frequencies, thus it has
dominant projection in the direc-
tion of the left singular vector uq
and possibly several next vectors.
Analogously so, s3, ....
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The first eight 5, vectors of matrix SHAW(400)

For some index 5 = k the low frequencies information is projected
out from s; by orthogonalization against the previous vectors Sj
7 =1,2,3,...,k—1, and the noise is revealed.
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Vector s1g is fully dominated by noise —

the noise level is revealed.

Now we get explicit information when the noise begins to cover useful
information in the data. The solution of the original problem Axz =~ b
computed through the bidiagonal problem

Lj—|—y ~ 61 €1,
for 5 > k£ = 18 can be significantly polluted by the noise.

(In the 19th step, the noise is partially projected out because vectors
s;j has to be mutually orthonormal.)
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4. Summary and future work

Information about the noise can be obtained directly from the Golub-
Kahan bidiagonalization.

Opened questions:

e How to implement this idea as a stopping criterion in hybrid
methods?

e Relationship to common stopping criteria in hybrid methods?
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Thank you for your attention!
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