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Problem formulation

Consider an ill-posed linear system

Ax = b , A ∈ Rn×n , b = b exact + bnoise 6= 0 ∈ Rn ,

A nonsingular,

‖ b exact ‖2 À ‖ bnoise ‖2 ,

• singular values of A decay gradually to zero,

• the noise component bnoise is unknown.

We wish to approximate

x exact = A−1 b exact .
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Consider Golub-Kahan bidiagonalization (GK) of A in the form

w0 = 0 , s1 = b / β1 , where β1 = ‖b‖2 ,

for j = 1, 2, 3, . . .

αj wj = AT sj − βj wj−1 , ‖wj‖2 = 1 ,

βj+1 sj+1 = A wj − αj sj , ‖sj+1‖2 = 1 ,

end .

stopped as soon as αj = 0 or βj+1 = 0 or j = n.
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The GK algorithm generates matrices Sj = [s1, . . . , sj], Wj = [w1, . . . , wj]

with orthonormal columns, and lower bidiagonal matrices

Lj =




α1
β2 α2

. . . . . .
βj αj


 , Lj+ =

[
Lj

eT
j βj+1

]
,

such that

Lj = ST
j A Wj , Lj+ = ST

j+1 A Wj .
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Core problem:

From the core problem formulation [Paige, Strakoš, 2006] it follows

that there exists a fundamental decomposition

PT [ b |A Q ] =

[
b1 A11

A22

]
, PT = P−1 , QT = Q−1 ,

yielding for A nonsingular a compatible subproblem

A11 x1 = b1 ,

of dimension k ≤ n, which contains all necessary and sufficient

information to solve the original problem

x = Q

[
x1
0

]
.
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In exact arithmetic, A nonsingular

GK stops with βk+1 = 0 (or j = n). Then Lk ≡ A11 is a bidiagonal
matrix and the matrices Sk, Wk represents first k columns of the
matrices P , Q, respectively; i. e.

Lk y = β1 e1

is the core problem.

In floating-point arithmetic

we have to stop GK using some stopping criteria. We can view the
stopping as a perturbation of the bidiagonal matrix

βk+1 −→ β̃k+1 = 0 ,

which yields the modified matrix L̃k.
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How to identify the noise

Consider the singular value decomposition (SVD)

A = Û Σ̂ V̂ T ,

Û = [û1, . . . , ûn] , V̂ = [v̂1, . . . , v̂n] , Σ̂ = diag (σ̂1, . . . , σ̂n) .

We analyze four sets of vectors of the same length n:

• sj, wj : the left and right vectors from the Golub-Kahan

bidiagonalization.

• ûj, v̂j : the left and right singular vectors of A.

8



• sj, wj : contain the noise, especially vectors sj,

because s1 = b/‖b‖2. Vectors wj are smoothed by the actions of

the operator AT .

• ûj, v̂j : has no information about the noise, which is contained

in the right-hand-side vector b. SVD of the matrix A can be

expressed from the SVDs of A11 ≡ Lk and A22, the singular

vectors of Lk have no information about the noise.

Our idea is: an information about the level of noise has to be

revealed from the vectors sj, wj generated by the Golub-Kahan

bidiagonalization.
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An example:

Consider problem SHAW(400) from [Hansen – RTools] with noisy

right hand side,

46.6225 = ‖ b exact ‖2 À ‖ bnoise ‖2 = 10−12 .

The noise was artificially added.

(Similar situation arises if the noise is not added, due to the rounding

errors.)
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We look at the noise-contaminated vectors sj in the noise-free basis

[û1, . . . , ûn], i. e. we study vectors

( ÛT sj ) , j = 1, 2, . . . .

The vector s1 dominated by low frequencies, will have dominant pro-

jection in the direction of left singular vector û1 and possibly several

next vectors. Analogously with s2, s3, ...

At some moment – for some index j – the low frequencies information

is projected out from sj by orthogonalization against the previous

vectors, and the noise will be revealed.
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Vector (ÛT s18) is fully dominated by noise –

the noise level is revealed.

Thus we get an explicit information when the noise begin to cover

a useful information in the data. The solution of original problem

Ax = b computed through bidiagonal problem

Ll y = β1 e1 ,

can for l > 18 be significantly polluted by the noise.

In the next step the noise is partially projected out, because

vectors sj has to be mutually orthonormal.
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Direct truncation

We try to solve the original problem by stopping the Golub-Kahan

algorithm directly in the 18th iteration and compute

xq = (Wq L−1
q ST

q ) b , q = 18 ,

then

‖x − x18 ‖2
‖x ‖2

.
= 0.81902 .
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Source of the problem:

The singular value

σmin (Lq)
.
= 4.8029× 10−14

is very small.

We have to regularize the solution!
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TSVD-regularized solution

Consider the SVD of the bidiagonal matrix

Lq = U11 Σ1 V T
11

and denote

Uq ≡ Sq U11 , Vq ≡ Wq V11 ∈ Rn×q ,

then

UT
q A Vq = Σ1 .

Moreover we denote

Uq = [u1, . . . , uq] , Vq = [v1, . . . , vq] , Σ1 = diag (σ1, . . . , σq) .
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We define a q-p-TSVD solution of Ax = b as

xTSVD, p
q =

p∑

j=1

uT
j b

σj
vj , p ≤ q .

and study the relative error

‖x − x
TSVD, p
q ‖2
‖x ‖2

and the singular values of Lq .

Remember q is dimension of bidiagonal problem, p is the parameter

of TSVD applied on the bidiagonal problem.
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For q = 18 , 19, the smallest singular value σq is affected by stopping.

Later the small singular values are “real” small singular values of the

problem. In both cases these singular values destroy the solution.

We have to stop the bidiagonalization later and then regularize

the problem to attain a better relative error.

[O’Leary, Simmons – 1981] [Hansen – 1998] [Kilmer, O’Leary – 2001]

However, it is obvious, that about the 18th step something essential

is happening.
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Summary

GK algorithm stopped at q = 16 17 ...
minimum relative error is at p = 16 17 ...
relative error is 10−4× 7.5009 5.4003 ...

... 18 19 20 22 25 32

... 17 18 18 19 19 19

... 4.5860 4.1007 4.0969 3.7850 3.7281 3.7281

There are three stages with different behavior.
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1. Stopping GK too early (q < 17): The direct truncation may be
good way to approach the solution, but some useful information
is lost and thus the approximation is not optimal.

There is no extremely small singular value.

2. Stopping GK exactly when noise reveals (q = 18 or a few
steps later): The direct solution is already inapplicable. If we
regularize, approximation is not optimal too. The information is
lost by regularization.

There is one very small singular value – the effect of stopping.

3. Stopping GK later (q > 22): We have to regularize, because
the noise was absorbed in problem, but all useful information to
compute good approximation of solution is captured.

There are some very small but “real” singular values.
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Open questions

Presented ideas are only the analysis of the problem and may not be

applicable directly to computation of the stopping moment.

Thus there are many opened questions:

• Relationship to common stopping criteria in hybrid methods?

• How to implement this idea?
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Appendix, ûj and sj vectors
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