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Overview:

• Motivation

• Golub-Kahan bidiagonalization

• Connection with Lanczos tridiagonalization

• The sketch of the proof



1. Motivation

Consider an orthogonally invariant approximation problem

Ax ≈ b, A ∈ Rn×m, b ∈ Rn,(1)

where ≈ means, e.g., using data corrections of the pre-

scribed type in order to get the nearest compatible system

(Least Squares, (Scaled) Total/Data Least squares).

For simplicity let AT b 6= 0.



C.C. Paige, Z. Strakoš (2006) proposed transformation

P T [
b AQ

]
=

[
b1 A11 0
0 0 A22

]
, P −1 = P T , Q−1 = QT ,

where b1 = β1e1 and A11 is a lower bidiagonal with

nonzero bidiagonal elements. The original problem is thus

decomposed into two subproblems

A11x1 ≈ b1, A22x2 ≈ 0

and the original problem solution is taken x ≡ Q

[
x1
0

]
.



Properties:

a) A11 has no zero or multiple singular values. Any zero

singular values or repeats that A has must appear in A22.

b) A11 has minimal dimensions and A22 has maximal di-

mensions, over all orthogonal transformations giving the

presented block structure.

c) All components of b1 = β1e1 in the left singular vector

subspaces of A11 (i.e. the first elements of all left singular

vectors of A11) are nonzero.



Consequence: The TLS solution of A11x1 ≈ b1 always

exists and is unique. Thus the system is called the core

problem in (1).

Computation of the core problem:

– direct partial upper bidiagonalization of [b, A] by using

the Householder reflections (small A)

– partial Golub-Kahan bidiagonalization (large A)



We will use the Golub-Kahan bidiagonalization, in relation

with the Lanczos tridiagonalization and the properties of

Jacobi matrices, to prove the core problem properties

a) – c).



2. Golub-Kahan bidiagonalization

Let v0 ≡ 0, u1 ≡ b/β1, where β1 = ‖b‖. The algorithm

computes for i = 1, 2, . . .

αivi = AT ui − βivi−1 , ‖vi‖ = 1

βi+1ui+1 = Avi − αiui , ‖ui‖ = 1

until αi = 0 or βi+1 = 0 or i = min{n, m}.



Let αiβi 6= 0 for 1 ≤ i ≤ k + 1 and denote by

Uk = (u1, . . . , uk), Vk = (v1, . . . , vk),

Lk =




α1
β2 α2

. . .
βk αk


 , Lk+ =

(
Lk

βk+1e
T
k

)
.

The matrices Uk, Vk have orthonormal columns and

AT Uk = VkLT
k ,(2)

AVk = [Uk, uk+1]Lk+ .(3)



The bidiagonalization of A with u1 = b/‖b‖ stops with:

• αiβi 6= 0 for i = 1, . . . , p; βp+1 = 0 or p = n. Then

(2) gives

UT
p AVp = Lp ,

UT
p [b, AVp] =




β1 α1
β2 α2

. . .
βp αp


 ,

and Lpx1 ≈ β1e1 is the compatible core problem.

Up, Vp represent the first p columns of the matrices

P, Q respectively.



• αiβi 6= 0 for i = 1, . . . , p, and βp+1 6= 0; αp+1 = 0

or p = m. Then (3) gives

[Up, up+1]
T AVp = Lp+,

[Up, up+1]
T [b, AVp] =




β1 α1
β2 α2

. . .
βp αp

βp+1




and Lp+x1 ≈ β1e1 is the incompatible core problem.

Up+1, Vp represent the first (p + 1) and p columns of

the matrices P, Q respectively.



3. Connection with the Lanczos tridiagonalization

Let B ∈ Rν×ν, w1 ∈ Rν (‖w1‖ = 1). The algorithm

computes in i steps

BWi = WiZi + γiwi+1e
T
i , W T

i wi+1 = 0,

where W T
i Wi = I, Zi ∈ Ri×i is symmetric tridiagonal

with positive subdiagonal elements.

We considere a possibly incomplete tridiagonalization stoped

whenever γi = 0.



Properties of the Jacobi matrix Zi:

• All its eigenvalues are simple.

• If B is symmetric positive semidefinite and w1 ⊥ ker (B),

then all its eigenvalues are positive.

• The first components of all its eigenvectors are nonzero.



Bidiagonalization × tridiagonalization:

• augmented matrix formulation

• normal matrix formulation



Augmented matrix formulation:

Tridiagonalization of

B =

(
0 A

AT 0

)

with w1 = (u1, 0)T yields in 2k steps the matrix

W2k =

(
u1 0 . . . uk 0
0 v1 . . . 0 vk

)

and Z2k with zeros on the diagonal and the subdiagonals

(α1, β2, . . . , αk) see [Paige - 1974].



Normal matrix formulation:

Assume that the Lanczos algorithm does not stop for

i = 1, . . . , k + 1.

Using AVk = Uk+1Lk+,

AT Uk+1 = VkLT
k+ + vk+1αk+1e

T
k+1

we obtain

AT AVk = AT Uk+1Lk+ = VkLT
k+Lk+ +αk+1βk+1vk+1e

T
k ,

where V T
k Vk = I, V T

k vk+1 = 0 and



LT
k+Lk+ =




α2
1 + β2

2 α2β2

α2β2 α2
2 + β2

3
. . .

. . . . . . αkβk
αkβk α2

k + β2
k+1




.

Summarizing, k steps of the Lanczos tridiagonalization

of B ≡ AT A with the starting vector v1 = AT b/‖AT b‖
produces Zk = LT

k+Lk+ .



Similarly, AT Uk = VkLT
k ,

AVk = UkLk + uk+1βk+1e
T
k

gives

AAT Uk = UkLkLT
k + αkβk+1uk+1e

T
k ,(4)

where UT
k Uk = I, UT

k uk+1 = 0 and

LkLT
k =




α2
1 α1β2

α1β2 α2
2 + β2

2
. . .

. . . . . . αk−1βk
αk−1βk α2

k + β2
k




.



Summarizing, k steps of the Lanczos tridiagonalization of

B ≡ AAT with the starting vector u1 = b/‖b‖ produces

Zk = LkLT
k .



4. Sketch of the proof

I. Case βp+1 = 0 or p = n, i.e. A11 = Lp :

Lp is the Cholesky factor of Zp = LpLT
p that results from

p steps of the tridiagonalization of AAT with u1 = b/‖b‖.

Let Lp = RΣST be the SVD (Σ =diag(σ1, . . . , σp)), then

Zp ≡ LpLT
p = RΣ2RT .

Consequently, (σ2
i , Rei) are the eigenpairs of Zp.



The properties of Zp yield:

• σ2
1, . . . , σ2

p are nonzero and distinct ⇒
the singular values of Lp are simple and nonzero

• eT
1 Rei 6= 0 for i = 1, 2, . . . , p ⇒

bT
1 Rei = β1e

T
1 Rei 6= 0 for i = 1, 2, . . . , p

and thus b1 has no zero components in the direction

of the left singular vectors of Lp

Consequence: The system Lpx1 = β1e1 is compatible

and satisfies the core problem properties a) and c).



II. Case αp+1 = 0 or p = m, i.e. A11 = Lp+ :

Then Zp = LT
p+Lp+ results from p steps of the tridiago-

nalization of AT A with the starting vector v1 = AT b/‖AT b‖.

Let Lp+ = RΣST be the SVD, then

Zp ≡ LT
p+Lp+ = SΣ2ST .

Consequently, (σ2
i , Sei) are the eigenpairs of Zp.

Similarly to the previous, the singular values of Lp+ are

distinct and nonzero and eT
1 Sei 6= 0.



Since Lp+S = RΣ and Lp+ is lower bidiagonal,

eT
1 Rei 6= 0 ⇒

bT
1 Rei 6= 0 for i = 1, . . . , p.

Consequence: The system Lp+x1 ≈ β1e1 is incompati-

ble and satisfies the properties a) and c).

Condition b) (the minimal dimensions of A11):

Follows by contradictions similarly to [Paige, Strakoš -

2006].



Thank you for your attention!


