Lanczos tridiagonalization, Golub-Kahan bidiagonalization and the core problem

I. Hnětynková*,**, Z. Strakoš*

* Institute of Computer Science, Academy of Sciences, Prague, Czech republic
** Charles University, Faculty of Mathematics and Physics, Department of Numerical Mathematics, Prague

SNA'06 - Seminar on numerical analysis January 16 - 20, 2006, Sedlec-Prčice

Overview:

- Motivation
- Golub-Kahan bidiagonalization
- Connection with Lanczos tridiagonalization
- The sketch of the proof

1. Motivation

Consider an orthogonally invariant approximation problem $A x \approx b, \quad A \in \mathbb{R}^{n \times m}, b \in \mathbb{R}^{n}$,
where \approx means, e.g., using data corrections of the prescribed type in order to get the nearest compatible system (Least Squares, (Scaled) Total/Data Least squares).

For simplicity let $\boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{b} \neq \mathbf{0}$.
C.C. Paige, Z. Strakoš (2006) proposed transformation $P^{T}[b \| A Q]=\left[\begin{array}{c||c|c}b_{1} & A_{11} & 0 \\ \hline 0 & 0 & A_{22}\end{array}\right], \quad P^{-1}=P^{T}, Q^{-1}=Q^{T}$, where $b_{1}=\beta_{1} e_{1}$ and A_{11} is a lower bidiagonal with nonzero bidiagonal elements. The original problem is thus decomposed into two subproblems

$$
A_{11} x_{1} \approx b_{1}, \quad A_{22} x_{2} \approx 0
$$

and the original problem solution is taken $x \equiv Q\left[\begin{array}{c}x_{1} \\ 0\end{array}\right]$.

Properties:

a) \boldsymbol{A}_{11} has no zero or multiple singular values. Any zero singular values or repeats that \boldsymbol{A} has must appear in \boldsymbol{A}_{22}. b) \boldsymbol{A}_{11} has minimal dimensions and \boldsymbol{A}_{22} has maximal dimensions, over all orthogonal transformations giving the presented block structure.
c) All components of $b_{1}=\beta_{1} e_{1}$ in the left singular vector subspaces of \boldsymbol{A}_{11} (i.e. the first elements of all left singular vectors of \boldsymbol{A}_{11}) are nonzero.

Consequence: The TLS solution of $A_{11} x_{1} \approx b_{1}$ always exists and is unique. Thus the system is called the core problem in (1).

Computation of the core problem:

- direct partial upper bidiagonalization of $[\boldsymbol{b}, \boldsymbol{A}]$ by using the Householder reflections (small \boldsymbol{A})
- partial Golub-Kahan bidiagonalization (large \boldsymbol{A})

We will use the Golub-Kahan bidiagonalization, in relation with the Lanczos tridiagonalization and the properties of Jacobi matrices, to prove the core problem properties a) $-c$.

2. Golub-Kahan bidiagonalization

Let $v_{0} \equiv 0, u_{1} \equiv b / \beta_{1}$, where $\beta_{1}=\|b\|$. The algorithm computes for $i=1,2, \ldots$

$$
\begin{array}{ll}
\alpha_{i} v_{i}=A^{T} u_{i}-\beta_{i} v_{i-1}, & \left\|v_{i}\right\|=1 \\
\beta_{i+1} u_{i+1}=A v_{i}-\alpha_{i} u_{i}, & \left\|u_{i}\right\|=1
\end{array}
$$

until $\alpha_{i}=0$ or $\beta_{i+1}=0$ or $i=\min \{n, m\}$.

Let $\boldsymbol{\alpha}_{\boldsymbol{i}} \boldsymbol{\beta}_{\boldsymbol{i}} \neq 0$ for $1 \leq \boldsymbol{i} \leq \boldsymbol{k}+1$ and denote by

$$
U_{k}=\left(u_{1}, \ldots, u_{k}\right), V_{k}=\left(v_{1}, \ldots, v_{k}\right)
$$

$$
L_{k}=\left(\begin{array}{ccc}
\alpha_{1} & & \\
\boldsymbol{\beta}_{2} & \alpha_{2} & \\
& \cdots & \\
& \boldsymbol{\beta}_{k} & \alpha_{k}
\end{array}\right), \quad L_{k+}=\binom{L_{k}}{\boldsymbol{\beta}_{k+1} e_{k}^{T}}
$$

The matrices U_{k}, V_{k} have orthonormal columns and

$$
\begin{align*}
& A^{T} U_{k}=V_{k} L_{k}^{T} \tag{2}\\
& A V_{k}=\left[U_{k}, u_{k+1}\right] L_{k+}
\end{align*}
$$

(3)

The bidiagonalization of \boldsymbol{A} with $\boldsymbol{u}_{1}=\boldsymbol{b} /\|\boldsymbol{b}\|$ stops with:

- $\alpha_{i} \beta_{i} \neq 0$ for $i=1, \ldots, p ; \beta_{p+1}=0$ or $p=n$. Then (2) gives

$$
\begin{aligned}
& U_{p}^{T} A V_{p}=L_{p} \\
& U_{p}^{T}\left[b, A V_{p}\right]=\left[\begin{array}{l|l|ll}
\beta_{1} & \begin{array}{lll}
\alpha_{1} & & \\
\boldsymbol{\beta}_{2} & \alpha_{2} & \\
& & \ldots \\
& & \boldsymbol{\beta}_{p}
\end{array} & \alpha_{p}
\end{array}\right]
\end{aligned}
$$

and $L_{p} x_{1} \approx \beta_{1} e_{1}$ is the compatible core problem. $\boldsymbol{U}_{\boldsymbol{p}}, \boldsymbol{V}_{\boldsymbol{p}}$ represent the first \boldsymbol{p} columns of the matrices $\boldsymbol{P}, \boldsymbol{Q}$ respectively.

- $\alpha_{i} \beta_{i} \neq 0$ for $i=1, \ldots, p$, and $\beta_{p+1} \neq 0 ; \alpha_{p+1}=0$ or $p=m$. Then (3) gives

$$
\begin{aligned}
& {\left[U_{p}, u_{p+1}\right]^{T} A V_{p}=L_{p+},} \\
& {\left[U_{p}, u_{p+1}\right]^{T}\left[b, A V_{p}\right]=\left[\begin{array}{l|lll}
\boldsymbol{\beta}_{1} & \alpha_{1} & & \\
\boldsymbol{\beta}_{2} & \alpha_{2} & \\
& & \cdots & \\
& & \boldsymbol{\beta}_{p} & \alpha_{p} \\
& & & \boldsymbol{\beta}_{p+1}
\end{array}\right]}
\end{aligned}
$$

and $L_{p+x_{1}} \approx \beta_{1} e_{1}$ is the incompatible core problem. $\boldsymbol{U}_{\boldsymbol{p}+\mathbf{1}}, \boldsymbol{V}_{\boldsymbol{p}}$ represent the first $(\boldsymbol{p}+\mathbf{1})$ and \boldsymbol{p} columns of the matrices P, Q respectively.

3. Connection with the Lanczos tridiagonalization

Let $B \in \mathbb{R}^{\nu \times \nu}, w_{1} \in R^{\nu}\left(\left\|w_{1}\right\|=1\right)$. The algorithm computes in \boldsymbol{i} steps

$$
B W_{i}=W_{i} Z_{i}+\gamma_{i} w_{i+1} e_{i}^{T}, \quad W_{i}^{T} w_{i+1}=0
$$

where $\boldsymbol{W}_{\boldsymbol{i}}^{\boldsymbol{T}} \boldsymbol{W}_{\boldsymbol{i}}=I, Z_{i} \in \mathbb{R}^{i \times i}$ is symmetric tridiagonal with positive subdiagonal elements.

We considere a possibly incomplete tridiagonalization stoped whenever $\gamma_{i}=0$.

Properties of the Jacobi matrix \boldsymbol{Z}_{i} :

- All its eigenvalues are simple.
- If \boldsymbol{B} is symmetric positive semidefinite and $\boldsymbol{w}_{1} \perp \operatorname{ker}(\boldsymbol{B})$, then all its eigenvalues are positive.
- The first components of all its eigenvectors are nonzero.

Bidiagonalization \times tridiagonalization:

- augmented matrix formulation
- normal matrix formulation

Augmented matrix formulation:

Tridiagonalization of

$$
B=\left(\begin{array}{cc}
0 & A \\
A^{T} & 0
\end{array}\right)
$$

with $w_{1}=\left(u_{1}, 0\right)^{T}$ yields in $2 k$ steps the matrix

$$
W_{2 k}=\left(\begin{array}{ccccc}
u_{1} & 0 & \ldots & u_{k} & 0 \\
0 & v_{1} & \ldots & 0 & v_{k}
\end{array}\right)
$$

and $Z_{2 k}$ with zeros on the diagonal and the subdiagonals $\left(\alpha_{1}, \beta_{2}, \ldots, \alpha_{k}\right)$ see [Paige - 1974].

Normal matrix formulation:

Assume that the Lanczos algorithm does not stop for $i=1, \ldots, k+1$.

Using

$$
\begin{aligned}
& A V_{k}=U_{k+1} L_{k+} \\
& A^{T} U_{k+1}=V_{k} L_{k+}^{T}+v_{k+1} \alpha_{k+1} e_{k+1}^{T}
\end{aligned}
$$

we obtain
$A^{T} A V_{k}=A^{T} U_{k+1} L_{k+}=V_{k} L_{k+}^{T} L_{k+}+\alpha_{k+1} \beta_{k+1} v_{k+1} e_{k}^{T}$,
where $V_{k}^{T} V_{k}=I, V_{k}^{T} v_{k+1}=0$ and

$$
L_{k+}^{T} L_{k+}=\left(\begin{array}{cccc}
\alpha_{1}^{2}+\beta_{2}^{2} & \alpha_{2} \beta_{2} & & \\
\alpha_{2} \beta_{2} & \alpha_{2}^{2}+\beta_{3}^{2} & \ddots & \\
& \ddots & \ddots & \alpha_{k} \beta_{k} \\
& & \alpha_{k} \beta_{k} & \alpha_{k}^{2}+\beta_{k+1}^{2}
\end{array}\right)
$$

Summarizing, k steps of the Lanczos tridiagonalization of $B \equiv A^{T} A$ with the starting vector $v_{1}=A^{T} b /\left\|A^{T} b\right\|$ produces $Z_{k}=L_{k+}^{T} L_{k+}$.

Similarly,

$$
\begin{aligned}
& A^{T} U_{k}=V_{k} L_{k}^{T} \\
& A V_{k}=U_{k} L_{k}+u_{k+1} \beta_{k+1} e_{k}^{T}
\end{aligned}
$$

gives
(4) $\quad A A^{T} U_{k}=U_{k} L_{k} L_{k}^{T}+\alpha_{k} \beta_{k+1} u_{k+1} e_{k}^{T}$,
where $\boldsymbol{U}_{\boldsymbol{k}}^{\boldsymbol{T}} \boldsymbol{U}_{\boldsymbol{k}}=\boldsymbol{I}, \boldsymbol{U}_{\boldsymbol{k}}^{\boldsymbol{T}} \boldsymbol{u}_{\boldsymbol{k}+\boldsymbol{1}}=\mathbf{0}$ and

$$
L_{k} L_{k}^{T}=\left(\begin{array}{cccc}
\alpha_{1}^{2} & \alpha_{1} \beta_{2} & & \\
\alpha_{1} \beta_{2} & \alpha_{2}^{2}+\beta_{2}^{2} & \ddots & \\
& \cdots & \ddots & \alpha_{k-1} \beta_{k} \\
& & \alpha_{k-1} \beta_{k} & \alpha_{k}^{2}+\beta_{k}^{2}
\end{array}\right)
$$

Summarizing, k steps of the Lanczos tridiagonalization of $\boldsymbol{B} \equiv \boldsymbol{A} \boldsymbol{A}^{T}$ with the starting vector $\boldsymbol{u}_{1}=\boldsymbol{b} /\|b\|$ produces $Z_{k}=L_{k} L_{k}^{T}$.

4. Sketch of the proof

I. Case $\beta_{p+1}=0$ or $p=n$, i.e. $A_{11}=L_{p}$:
L_{p} is the Cholesky factor of $Z_{p}=L_{p} L_{p}^{T}$ that results from \boldsymbol{p} steps of the tridiagonalization of $\boldsymbol{A} \boldsymbol{A}^{\boldsymbol{T}}$ with $\boldsymbol{u}_{1}=\boldsymbol{b} /\|\boldsymbol{b}\|$.

Let $L_{p}=\boldsymbol{R} \Sigma \boldsymbol{S}^{\boldsymbol{T}}$ be the SVD $\left(\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{p}\right)\right)$, then

$$
Z_{p} \equiv L_{p} L_{p}^{T}=R \Sigma^{2} R^{T}
$$

Consequently, $\left(\sigma_{i}^{2}, R e_{i}\right)$ are the eigenpairs of Z_{p}.

The properties of $\boldsymbol{Z}_{\boldsymbol{p}}$ yield:

- $\sigma_{1}^{2}, \ldots, \sigma_{p}^{2}$ are nonzero and distinct \Rightarrow
the singular values of $\boldsymbol{L}_{\boldsymbol{p}}$ are simple and nonzero
- $e_{1}^{T} R e_{i} \neq 0$ for $i=1,2, \ldots, p \Rightarrow$

$$
b_{1}^{T} R e_{i}=\beta_{1} e_{1}^{T} R e_{i} \neq 0 \quad \text { for } i=1,2, \ldots, p
$$

and thus $\boldsymbol{b}_{\mathbf{1}}$ has no zero components in the direction of the left singular vectors of $\boldsymbol{L}_{\boldsymbol{p}}$

Consequence: The system $L_{p} x_{1}=\beta_{1} e_{1}$ is compatible and satisfies the core problem properties a) and c).
II. Case $\alpha_{p+1}=0$ or $p=m$, i.e. $A_{11}=L_{p+}$:

Then $\boldsymbol{Z}_{\boldsymbol{p}}=\boldsymbol{L}_{\boldsymbol{p}+}^{\boldsymbol{T}} \boldsymbol{L}_{\boldsymbol{p}+}$ results from \boldsymbol{p} steps of the tridiagonalization of $A^{T} A$ with the starting vector $\boldsymbol{v}_{1}=A^{T} b /\left\|A^{T} b\right\|$.

Let $\boldsymbol{L}_{p+}=\boldsymbol{R} \boldsymbol{\Sigma} \boldsymbol{S}^{\boldsymbol{T}}$ be the SVD, then

$$
Z_{p} \equiv L_{p+}^{T} L_{p+}=S \Sigma^{2} S^{T}
$$

Consequently, $\left(\sigma_{i}^{2}, S e_{i}\right)$ are the eigenpairs of Z_{p}.

Similarly to the previous, the singular values of $\boldsymbol{L}_{\boldsymbol{p}+}$ are distinct and nonzero and $e_{1}^{T} S e_{i} \neq 0$.

Since $\boldsymbol{L}_{\boldsymbol{p}+} \boldsymbol{S}=\boldsymbol{R} \boldsymbol{\Sigma}$ and $\boldsymbol{L}_{\boldsymbol{p}+}$ is lower bidiagonal, $e_{1}^{T} R e_{i} \neq 0 \Rightarrow$

$$
b_{1}^{T} R e_{i} \neq 0 \text { for } i=1, \ldots, p
$$

Consequence: The system $L_{p+x_{1}} \approx \beta_{1} e_{1}$ is incompatible and satisfies the properties a) and c).

Condition b) (the minimal dimensions of A_{11}):
Follows by contradictions similarly to [Paige, Strakoš 2006].

Thank you for your attention!

