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1. Introduction

● The solution of sequences of linear systems arises in numerous
applications

● Rather few work has been done in our community on efficient solution
of general sequences of linear systems

● The central question of such work will be:

How can we share part of the computational effort throughout the
sequence ?

● Below we list some known strategies.
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1. Introduction

● Very simple trick: Hot starts, i.e. use the solution of the previous system
as initial guess.

● Sometimes exact updating of the factorizations for large problems is
feasible: Rank-one updates of LU factorizations have been used since
decades in the simplex method where the change of one system matrix
to another is restricted to one column [Bartels, Golub, Saunders - 1970;
Suhl, Suhl - 1993].

● General rank-one updates of an LU decomposition are discussed in
[Stange, Griewank, Bollhoefer - 2005].

● If the linear solver is a Krylov subspace method, strategies to recycle
information gained from previously generated Krylov subspaces have
shown to be beneficial in many applications [Parks, de Sturler, Mackey,
Johnson, Maiti - 2006], [Giraud, Gratton, Martin - 2007], [Frank, Vuik -
2001].
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1. Introduction

● When shifted linear systems with identical right hand sides have to be
solved, Krylov subspace methods allow advantageous implementations
based on the fact that all systems generate the same subspace
[Frommer, Glässner - 1998]

● In nonlinear systems solved with a Newton-type method one can skip
evaluations of the (approximate) Jacobian during some iterations,
leading to Shamanskii’s combination of the chord and Newton method
[Brent - 1973] ⇒ linear solving techniques with multiple right hand sides
can be exploited.

● Another option: Allow changing the system matrices but freeze the
preconditioner [Knoll, Keyes - 2004].
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1. Introduction

To enhance the power of a frozen preconditioner one may also use
approximate updates:

● In [Meurant - 2001] we find approximate updates of incomplete
Cholesky factorizations and

● in [Benzi, Bertaccini - 2003, 2004] banded updates were proposed for
both symmetric positive definite approximate inverse and incomplete
Cholesky preconditioners.

● In Quasi-Newton methods the difference between system matrices is of
small rank and preconditioners may be efficiently adapted with
approximate small-rank updates; this has been done in the symmetric
positive definite case, see e.g. [Bergamaschi, Bru, Martínez, Putti -
2006, Nocedal, Morales - 2000].
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2. The proposed preconditioner updates

● We focus on a black-box approximate preconditioner update for general
nonsymmetric systems solved by arbitrary iterative methods.

● Updating frozen preconditioners for preconditioned iterative methods
instead of their recomputation.

● Simple algebraic updates which can be considered in matrix-free
computations.

Notation: Consider two systems

Ax = b, A+x+
= b+

; preconditioned by M, M+,

let B ≡ A − A+.

We would like the update M+ to become as powerful as M .
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2. The proposed preconditioner updates

If ||A − M || is the accuracy of the preconditioner M for A, we will try to
find an updated M+ for A+ with comparable accuracy,

||A − M || ≈ ||A+ − M+||.

Let M be factorized as M = LDU, then the choice

M+ = LDU − B

would give ||A − M || = ||A+ − M+||. We will approximate this ideal
update LDU − B in two steps, similarly to the techniques in [Benzi,
Bertaccini - 2003, Bertaccini - 2004]. First we use

LDU − B = L(DU − L−1B) ≈ L(DU − B) or

LDU − B = (LD − BU−1)U ≈ (LD − B)U

depending on whether L is closer to identity or U .
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2. The proposed preconditioner updates

Define the standard splitting

B = LB + DB + UB.

Then the second approximation step is

LDU − B ≈ L(DU − B) ≈ L(DU − DB − UB) ≡ M+

(upper triangular update) or

LDU − B ≈ (LD − B)U ≈ (LD − LB − DB)U ≡ M+

(lower triangular update). Then M+ is for free and its application asks for
one forward and one backward solve.

● Ideal for upwind/downwind modifications
● Our experiments cover broader spectrum of problems
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2. The proposed preconditioner updates

As an example consider a two-dimensional nonlinear convection-diffusion
model problem: It has the form

−∆u + Ru

(

∂u

∂x
+

∂u

∂y

)

= 2000x(1 − x)y(1 − y), (1)

on the unit square, discretized by 5-point finite differences on a uniform
grid.

● The initial approximation is the discretization of u0(x, y) = 0.
● We use here R = 100 and different grid sizes.
● We solve the resulting linear systems with BiCGSTAB with right

preconditioning.
● Iterations were stopped when the Euclidean norm of the residual was

decreased by seven orders.
● Matlab implementation.
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2. The proposed preconditioner updates

BiCGSTAB iteration counts; reference factorization ILU(0)
Matrix Recomp Freeze Triangular update

A(0) 40 40 40

A(1) 25 37 37

A(2) 24 41 27

A(3) 20 48 26

A(4) 17 56 30

A(5) 16 85 32

A(6) 15 97 35

A(7) 14 106 43

A(8) 13 97 44

A(9) 13 108 45

A(10) 13 94 50

A(11) 15 104 45

A(12) 13 156 49

overall time 13 s 13 s 7.5 s
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2. The proposed preconditioner updates

The upper triangular update

M+ = L(DU − DB − UB)

combines an incomplete LU factorization with the structural, Gauss-Seidel
type preconditioner

DU − B ≈ triu(DU − B).

However it does not take into account both triangular parts of DU − B.
This can be simply corrected through the splitting

DU − B = L̂ + D̂ + Û

and defining the Gauss-Seidel update

M+ = L (L̂ + D̂)D̂−1(D̂ + Û)

and similarly for lower triangular update [Duintjer Tebbens, Tůma - 2007].
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2. The proposed preconditioner updates

BiCGSTAB iteration counts; reference factorization ILU(0)
Matrix Recomp Freeze Triangular update Gauss-Seidel update

A(0) 40 40 40 40

A(1) 25 37 37 27

A(2) 24 41 27 27

A(3) 20 48 26 19

A(4) 17 56 30 21

A(5) 16 85 32 25

A(6) 15 97 35 29

A(7) 14 106 43 31

A(8) 13 97 44 40

A(9) 13 108 45 38

A(10) 13 94 50 44

A(11) 15 104 45 35

A(12) 13 156 49 42

overall time 13 s 13 s 7.5 s 6.5 s
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2. The proposed preconditioner updates

The following CFD problem (compressible supersonic flow) is a less
academic example:

● Frontal flow with Mach-number 10 around a cylinder, which leads to a
steady state.

● 3000 steps of the implicit Euler method are performed.
● The grid consists of 20994 points, we use Finite Volume discretization

and system matrices are of dimension 83976. The number of
nonzeroes is about 1.33·106 for all matrices of the sequence.

● In the beginning, a strong shock detaches from the cylinder, which then
slowly moves backward through the domain until reaching the steady
state position.

● The iterative solver is BiCGSTAB with stopping criterion 10−7, the
implementation is in C++.
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2. The proposed preconditioner updates
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2. The proposed preconditioner updates

Can we define a good indicator of the quality of the update compared to
the frozen preconditioner ? For ILU(0) and lower triangular updates we
can prove

Lemma 1 Let

ρ =
‖(DB + LB)(I − U)‖F (2 ‖E − UB‖F + ‖(DB + LB)(I − U)‖F )

‖DB + LB‖2
F

< 1,

where E = A − LDU . Then the accuracy ‖A+ − (LD − DB − LB)U‖F of
the updated preconditioner is higher than the accuracy of the frozen
preconditioner ‖A+ − LDU‖2

F with

‖A+ − (LD−DB − LB)U‖F

≤
√

‖A+ − LDU‖2
F − (1 − ρ)‖DB + LB‖2

F . (2)
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2. The proposed preconditioner updates

For the first systems of the CFD problem the previous bound has the
values

i ‖A(i) − LDU‖F ‖A(i) − M (i)‖F Bound from (2) ρ from (2)

2 37.454 34.277 36.172 0.571

3 37.815 34.475 36.411 0.551

4 42.096 34.959 36.938 0.245

5 50.965 35.517 37.557 0.104

6 55.902 36.118 38.308 0.083

Accuracy of the preconditioners and theoretical bounds

However, the indicator-value ρ
● describes only accuracy, not stability ‖I − A(i)(M (i))−1‖ of the update
● is not fully for free because of the matrix product (DB + LB)(I − U).
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3. Updates in matrix-free environment

In many applications the linear solver is chosen such that it is not
necessary to store system matrices; a matrix-vector product subroutine
suffices. Can the updates be used in matrix-free environment ?

First note that to compute an incomplete factorization like ILU in
matrix-free environment at all, the system matrix has to be estimated.
This can be done with a graph coloring algorithm that tries to minimize the
number of matvecs for a good estimate [Cullum, Tůma - 2006].

Recall the upper triangular update

M+ = L(DU − DB − UB)

is based on the splitting

LB + DB + UB = B = A − A+.

Thus the update needs information on A and A+.
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3. Updates in matrix-free environment

We propose two strategies:

1. Estimation of only the upper triangular part of A+ (the matrix A has
been estimated anyway). Depending on the sparsity structure this might
cost significantly less matvecs than estimation of the whole matrix A+.

2. The second strategy circumvents any estimation of A+. Let the matvec
be replaced with a function evaluation

A+ · v → F+(v), F+ : Rn → R
n.

We assume it is possible to compute the components F+
i : Rn → R of F+

individually,
eT
i · A+ · v → F+

i (v), F+
i : Rn → R.

● The forward solves with L in M+ = L(DU − DB − UB) are trivial.



J. Duintjer Tebbens, M. Tůma 19

3. Updates in matrix-free environment

● For the backward solves, use a mixed explicit-implicit strategy: Split
DU − DB − UB = DU − triu(A) + triu(A+) in the explicitly given part
X ≡ DU − triu(A) and the implicit part triu(A+). We then have to
solve the triangular systems
(

X + triu(A+)
)

z = y, yielding the standard backward substitution cycle

zi =
yi −

∑

j>i xijzj −
∑

j>i a+
ijzj

xii + a+
ii

, i = n, n − 1, . . . , 1. (3)

The sum
∑

j>i a+
ijzj can be computed by the function evaluation

∑

j>i

a+
ijzj = F+

i

(

(0, . . . , 0, zi+1, . . . , zn)T
)

. (4)

The diagonal {a+
11, . . . , a

+
nn} can be found by computing

a+
ii = F+

i (ei), 1 ≤ i ≤ n.



J. Duintjer Tebbens, M. Tůma 20

4. Conclusions, future work

● We described a black-box preconditioner update for general
nonsymmetric sequences of linear systems

● It can be combined with other techniques for solving specific types of
sequences

● It can be applied in matrix-free environment

● Future work includes permutations to enhance triangular dominance,
incorporating a priori estimators of the quality of the update and
formulation for approximate inverse factorizations



J. Duintjer Tebbens, M. Tůma 21

For more details see:
● BIRKEN PH, DUINTJER TEBBENS J, MEISTER A, TŮMA M: Preconditioner Updates Applied to CFD Model

Problems, published online in Applied Numerical Mathematics in October 2007.

● DUINTJER TEBBENS J, TŮMA M: Improving Triangular Preconditioner Updates for Nonsymmetric Linear

Systems, LNCS vol. 4818, pp. 737–744, 2007 (proceedings of the 6th International
Conference on Large-Scale Scientific Computations).

● DUINTJER TEBBENS J, TŮMA M: Efficient Preconditioning of Sequences of Nonsymmetric Linear Systems,
SIAM J. Sci. Comput., vol. 29, no. 5, pp. 1918–1941, 2007.
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