Parallel Matlab — an Introduction

Ondrej Jakl, Tomas Musil

Institute of Geonics, Czech Academy of Sci.
VSB — Technical University Ostrava

SNA 2008

MATLAB

MATrix LABoratory: One of the most widely used mathematical

computing environments in technical Main competitors:
computing * Maple (Maplesoft)
An interactive environment providing | * Mathematica (Wolfram Research)

— high performance computational routines

— an easy-to-use, C-like scripting language
In the 1970s started out as an interactive interface to EISPACK and
LINPACK (sequential) linear system solution routines
Commercially produced by The Mathworks since 1984

— founders Jack Little and Cleve Moler
A serial program

1995: Cleve Moler argued that there was no market at the time for a
parallel Matlab

Motivation for parallel Matlab

Modern scientific and engineering problems grow in complexity
— the computation time and memory requirements increase
— parallel computation becomes a necessity

Multiple Matlab instances running on a parallel computer can be used
to solve embarrassingly parallel problems

— without any change to Matlab itself

Increase of problem sizes and processor speed have reduced the portion
of time spent in non-computation related routines

— e.g. in the parser, interpreter and graphics routines, where parallelism 1s
difficult to find

Dramatic changes in hardware: parallel systems entered mainstream
— clusters since late nineties

— multicore processors recently

Going parallel

* November 2003 [Choy2005]: 27 parallel Matlab projects found on the
Internet

— varying in their scope (one-man projects, university lab research projects,
commercial projects, etc.)

— varying in status (defunct, developed)
— generally not supported by The MathWorks
e Approaches
— compile Matlab scripts into parallel native code
— provide a parallel backend to Matlab, using Matlab as a graphical frontend
— coordinate multiple MATLAB processes to work in parallel

MathWorks’ approach

DCT/DCE

Distributed computing products (pM)

— Distributed Computing Toolbox (DCT): adds parallel constructs /
processing to Matlab

— Distributed Computing Engine (DCE): necessary to take advantage
of DCT on a cluster or on more than 4 processors

Initial version 1.0 in 2004 (part of R14 SP1)

— enabled to execute coarse-grained MATLAB algorithms divided into
independent tasks in a cluster of computers (= distributed computing)

Supported on Windows, UNIX (Linux, Solaris), Macintosh platforms
Can be tested on a one-processor machines

Generally very little can be found on pM internals

Rapid development

Each year substantial improvements of DCT (DCE)
Version 2.0 (part of R14 SP3 — Nov 2005) - 224

— support for communication among interdependent tasks, based on the
industry-standard Message Passing Interface (MPI) (= parallel computing)

— support for various schedulers (LSF, MPIExec)
Version 3.0 (part of Release 2006b — Sep 2006) - 374

— 1nteractive parallel mode (pmode)
— distributed arrays & parfor loop
— support for Windows Compute Cluster Server (CCS)

Current version 3.2 (part of Release 2007b — Sep 2007) - 487
— local scheduler and workers (ver. 3.1)
— new parfor loops

— parallel profiler

Basic pM setup

MATLAB Worker
MATLAB Distributed
_________________________ Computing Engine
MATLAB Client Scheduler MATLAB Worker
Distributed | or MATLAB Distributed
Computing | ! JDIC) MGHGQEF Computing Engine
Toolbox | !
MATLAB Worker
| : MATLAB Distributed
. Workstation Computing Engine

Note: for testing purposes, all components can share a single computer

Terminology

A job 1s some large operation that you need to perform in MATLAB

A job i1s decomposed into tasks
— the user defines the decomposition
— tasks are supposed to run concurrently Client
— tasks do not necessarily have to be identical
The MATLAB session in which the job and its [+ -
tasks are defined is called the client session A n
— needs DCT
DCE is a run-time environment (engine) that executes the job by
evaluating each of its tasks and returns the result to the client session
The job manager is the central part of the DCE
— coordinates the execution of jobs and the evaluation of their tasks
— distributes the tasks for evaluation to the engine’s individual Matlab
sessions called workers (labs)
— pM can also collaborate with some third-party job schedulers (programs
imposing some job priority scheme on the cluster)
— DCT can also run a local scheduler and up to 4 workers on the client
machine

Task

Job Results

All Results

Scheduler Task

or
Job Manager [*fer

pM’s distributed computing

 Distributed jobs: composed of independent tasks
— tasks do not directly communicate with each other
— tasks do not need to run simultaneously
— not important which worker executes a specific task

* pM implements a variant of the master-worker model —
— akind of task-scheduling algorithm
— load balancing effect JOb ﬁ
— data and functional ~ R
decomposition @@ @ @ M
— pM takes care \@
of all the organization = ~~=-----_----- 7

of the computation
e Applicable for coarse-grained embarrassingly parallel problems
— e.g. Monte Carlo simulations
e Java RMI (Remote Method Invocation) behind the scene?

10

Running a distributed job

* Find a job manager
— sched = findResource('scheduler','type’,'local’)
 Create a job
— job = createdob(sched);
 Create tasks of the job (compute the products 2x3, 2x4, 2x5 in parallel)
— createTask(job, @prod, 1, {[2 3]});
— createTask(job, @prod, 1, {[2 4]});
— createTask(job, @prod, 1, {[2 5]});
e Submit a job for execution
— submit(job);
» The job manager distributes the tasks to the workers for evaluation
e Retrieve the job’s results
— waitForState(job)
— getAllOutputArguments(job) ans =[6] [8] [10]
e Destroy the job

— destroy(job) .

Distributed evaluation of functions

e Straightforward function evaluation on a set of arguments concurrently
 Alleviates from havi individual tasks and jobs

e feval — evaluates a function handle
— prod([2,3]) ans = 6 @ - function handle for

— feval(@prod, [2,3]) ans = 6 passing functions as
» dfeval — distributed version of fevaj/\ arguments
— dfeval(@prod, {[2,3] [2,4] [2,5]}) ans = [6] [8] [10]
e Number of task equals to the number of elements
in the cell array
e Some natural restrictions

e pM: finds job a job manager, creates a job, tasks in that job, submits the
job, retrieves results

e Synchronous (blocking) and asynchronous (non-blocking) versions
(dfevalasync)

12

pM’s parallel computing

 Parallel job: composed of several instances of a single task

the task i1s duplicated on each worker (called lab in pM)

the duplicated tasks run simultaneously

each worker can perform its task on a different set of data

the task instances can communicate with each other during execution
the task instances are enumerated (labindex)

e Makes pM to a true message passing system

built on MPI (Message Passing Interface) implementation

e supplied with MPICH?2 runtime
message passing through labSend, labReceive, labSendReceive,
labProbe, labBarrier, labBroadcast, gop, gplus, ...

» those functions have direct counterparts in MPI

» labSend analog to MPI’s standard send (MPI|_Send) — synchronous
blocking send (may deadlock for large data!)

* in MPI much richer collection of message passing functions
tags for data identification

13

Feel & taste of pM’s message passing

% Message ping-pong
A = rand(10); % a simulated message
tic; % start time measuring
tag = 1;
fori=1:100
if (labindex == 1) % master
labSend(A,2,tag); % send the message and wait for reply
A=labReceive(2,tag);
else % slave

A = labReceive(1,tag); % get the message and return immediately

labSend(A,1,tag);
end

end
tm = toc; % resulting time

14

Interactive parallel mode

e pmode — an

interactive interface to the parallel job mechanism

e pM client session interacts directly with the labs participating in the
interactive session.

— commands are executed immediately on all the labs >> pmode start
— results are returned immediately to the client session P>> 'hostname
e Useful for debugging purposes, working with ; nggé
d1str1.but.ed arrays, ch. | 3 thea3
e Multi-window user interface in DCT 3.2 4: thea04
T 5: thea05
6: thea06
7:thea07
: 8: thea08
M [T P>> pmode exit
;o o >>

P> soquent = [1 2; 3 4; 5 6]

15

Distributed arrays

 Distributed arrays: arrays partitioned into segments, each of which

resides in the workspace of a different lab

* Allow to handle larger data sets than
in a single Matlab session

e Support for more than 150 Matlab functions

L2

L3

(e.g. finding eigenvalues)
— 1n a very similar way as with regular arrays

e Parallel processing transparent to the user

— without having to manage low-level details of message passing
e Coheres to the data parallel model of parallel computations

— based on collective operations on arrays, with these arrays distributed over a

number of processors

— distribution of data and communication is done by the compiler with

guidance from the programmer
— HPF — the best known representative

16

More on distributed arrays

e Construction: P>> D = ones(250, 10, darray())
— partitioning a larger array (distribute) 1:local(D) is 250-by-3
— building from smaller arrays (darray) 2: local(D) is 250-by-3
— using constructor functions 3: local(D) is 250-by-2
(e.g. rand(m,n.darray())) 4: local(D) is 250-by-2

e Decomposition options:
— 1D block decomposition along the selected distribution dimension
— 2D decomposition for 2-dimensional arrays only

 Quite a lot of other auxiliary functions for e.g.
— creating local arrays from distributed ones and vice versa

— obtaining information about (distributed) arrays
e e.g.1f and how they are partitioned

— changing the dimension of the distribution
— providing indices in the distribution segments

17

Parallel FOR loop

e Performs loop iterations without enforcing their particular ordering
e Allows for fine-grained parallelism, interleaving serial and parallel code
 Parfor-loop distributes loop iterations over a set of workers

— 1terations must be independent of each other

— no communication can occur between workers during the execution

— part of the iterations is executed on the client (where the parfor was issued),
part is executed in parallel on the workers

e pM takes care for the necessary communications

— distributes parfor-loop data to the workers

— gathers results back to the client and pieces them together
e May be counterproductive with a small number of simple calculations
e Data parallel construct — analogues in other languages:

— FORALL in HPF Ex.: FORALL (I=1:N, J=1:M) A(l,J) = 1.0/ REAL(I+J)

— PARALLEL FOR in OpenMP Ex. C language: | #gpragma omp parallel for
for (i=1;1<=n;i++)
b[i] = (a[i]-a[i-1]) * 0.5;

18

More on partor-loop

e Changed in DCT ver. 3.2 — even syntax!
— originally just for use with distributed arrays
in a parallel job
» matlabpool: reserves/start (some) workers
for executing subsequent parfor-loops

e Parfor-loops are not fully equivalent to their
for-loop counterparts, e.g.

— restrictions on using some statements
in the loop body (e.g. break)

— value of the loop variable at the end
of the loop 1s unchanged

% Parallel Pi calculation

matlabpool open 4

nsteps = 100000;

step = 1/nsteps;

s =0;

parfor |
X = (

= (1 (nsteps—1))
- 0.5) * step;
s+ (4/(1 +x"2));
end

s * step

ans = 3.1416

matlabpool close

e Classification of variables referred to in the parfor-loop (5 types)

— automatic — no explicit clauses

» OpenMP: private, shared, reduction, lastprivate, etc.

19

Practical pM computations

20

Nonlinear rotordynamics

Equation of motion of a rotor with journal bearings
MX+B+vK,; +QG)X+(K+ QK.)x=1(7)+1; (X,X)

Features:

— rank of matrices 1s quite low, shaft is wheel
beam-like body (DOF about 100) /

— dependence of left-hand side on
revolutions Q of the rotor

— nonlinear couple vector on right-hand
side

journal bearing

21

Elementary rotor calculations

Static calculations involve

calculation of equilibrium position and its stability judgment

assembling of Campbell's diagram — dependence of eigenvalues of
the linearized system on revolutions

Dynamic calculations involve

determination of dynamic coefficients dependence on revolutions
calculation of steady state response of a rotor on centrifugal forces
stability judgment of a periodical response

calculation of amplitude-frequency characteristic

transient analysis — response on general time dependent forces

22

Calculations dependent on revolutions

Appropriate for distributed computations
— revolution range is divided into intervals
— each task calculates independently one interval
— efficiency is almost absolute (1)

b _ CPU 1 CPU2 CPU3 CPU 4 CPUS5 CPUB CPU7 CPU 8
1074 ;‘ Lad bl
’ J\J ﬁ_/ k:
10_8 / .
/ Left bearing
i’ |
£ , .
g Right bearing
=0
|
£
w g .
10 Middle wheel
10"
i _ . . .
Amplitude-frequency characteristics
" _
10" I ! ! ! ! | ! | ! | ! ! ! |
u] 200 400 BO0 500 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200

revolutions [radfs]

Eigen-values

Dynamic coefficient

600— —
. :
Campbell’s diagram .
500 0 °
.
oS T e
.
300 2x
PSR A AT S LT B§ ooooooooooooooooo
:
2000 e dhee ga ooooooooooooooooooooo
33°
1001
£
.) . . ‘ .
0 100 200 300 400 500 600
Revolutions
9 . . [
*~ Dynamic coefficients ;
I
—
] Kzz
10 ¢ E
7 L '
10 ¢
[
10 ¢
e 1 L 1 1 L
1° 0 100 200 300 400 500 600

Revolutions

Time dependent problems

Implicit algorithms for time dependent problems often require
calculations of Jacobi matrices
— e.g. Modified Newmark's method, Trigonometric collocation method

90

Journal centre trajectory Shape-of rotor’s vibration

0.0002

R venit
LB SRR |) g

T
o- A
E 05 AL
N s
0 T .
[
5
L 15
e A
z - 15
@]
2.5
x10°
5 L L 0 Displacement y [m]
1617 et
27 181920212223242526 5
271

24

Scheme of the computation

Parallel computation applied
— elements of Jacobi matrix are computed simultaneously
— Master-Slave scheme with active message passing was most efficient

Time dependent problem

|

Jacobi matrix

Input
data

Next time step

25

Speedup [-]

w

(o]

~

(e}

(3]

I

N
|

—_
|

o
I

Performance characteristics

Achieved speedup and efficiency on the Thea cluster (Institute of
Geonics) for different configurations (number of bearings) of the rotor
— Thea: a Beowulf cluster composed of 8 PC’s (AMD Athlon 1.4 GHz, 1.5 GB
RAM), Fast Ethernet interconnect; DCT/DCE version 3.0

100 I
90 I

80

70

60

50

40 -

Efficiency [%]

30

20

10 -

26

Conclusions

“Think Matrices, Not Messages”

(Cleve Moler)

27

