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MODEL PROBLEM 1: Dirichlet problem

−∆u = f on ω (1)

u = g in γ ≡ ∂ω (2)

Fictitious domain method (FDM):

PDE (1) is solved on the fictitious domainΩ, ω ⊂ Ω, with a simple geome-
try. The corresponding stiffness matrixA is structured. The original boundary
conditions (2) onγ are enforced by Lagrange multipliers or control variables.
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MODEL PROBLEM 2: Signorini problem

−∆u = f on ω (3)

u− g ≥ 0,
∂u

∂nγ

≥ 0, (u− g)
∂u

∂nγ

= 0 in γ ≡ ∂ω (4)

FDM formulation uses the non-differentiablemax-function to express BC (4):

Au + BΓλΓ = f

Cγ,iu = max {0, Cγ,iu− ρ(Bγ,iu− gi)}, i = 1, . . . ,m

}
(5)

whereBγ,i, BΓ,i and Cγ,i are rows of Dirichlet and Neumann trace matrices,
respectively.

The equations (5) can be solved by the semi-smooth Newton method, in which

Jacobian=

(
A B>

Γ

∂G(u) 0

)
is determined by the generalized derivative∂G(u).
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MODEL PROBLEM 2: Newton method = Active set algorithm

(0) Setk := 1, ρ > 0, εu > 0, u(0) ∈ Rn, λ(0) ∈ Rm.

(1) Define the inactive and active sets by:

Ik := {i : Cγ,iu
k−1 − ρ(Bγ,iu

k−1 − gi) ≤ 0}
Ak := {i : Cγ,iu

k−1 − ρ(Bγ,iu
k−1 − gi) > 0}

(2) Solve:  A B>
Γ

Bγ,Ak 0
Cγ,Ik 0

 (
uk

λk
Γ

)
=

 f
gAk

0


(3) If ‖uk − uk−1‖/‖uk‖ ≤ εu, returnu := uk.

(4) Setk := k + 1, and go to step (1).

Remark:The mixed Dirichlet-Neumann problem is solved in each Newton step,
that is described by the non-symmetric saddle-point system.
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FORMULATION: Non-symmetric sadle-point system

(
A B>

1
B2 0

) (
u
λ

)
=

(
f
g

)
General assumptions

A . . . non-symmetric(n× n)–matrix
. . . singularwith p = dim KerA

B1, B2 . . . full rank (m× n)–matrices
. . . B1 6= B2

Special FDM assumptions

• n is large (n = 4198401)

• m � n (m = 360)

• p � m (p = 1)

• A is structuredso that actions ofA† or (A−1) are ”cheap”

• B1, B2 are highlysparseso that their actions are ”cheap”
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ALGORITHMS based on the Schur complement reduction

Case 1: A non-singular, symmetric

Case 2: A non-singular, non-symmetric

Case 3: A singular, symmetric

Case 4: A singular, non-symmetric
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Case 1: A non-singular, symmetric

(
A B>

B 0

) (
u

λ

)
=

(
f

g

) =⇒ u = A−1(f − B>λ)

=⇒ BA−1B>︸ ︷︷ ︸ λ = BA−1f − g

negative Schur complementS

Algorithm

1◦ Assembled := BA−1f − g.

2◦ Solve iterativelySλ = d with S := BA−1B>.

3◦ Assembleu := A−1(f − B>λ).

If A is positive defined, then CGM can be used.

Matrix-vector productsSµ are performed by:

Sµ :=
(
B

(
A−1

(
B>µ

)))
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Case 2: A non-singular, non-symmetric

(
A B>

1

B2 0

) (
u

λ

)
=

(
f

g

) =⇒ u = A−1(f − B>
1 λ)

=⇒ B2A
−1B>

1︸ ︷︷ ︸ λ = B2A
−1f − g

negative Schur complementS

Algorithm is analogous.

• an iterative method for non-symmetric matrices is required
(GMRES, BiCG, BiCGSTAB, ...)

A :=

(
A B>

1

B2 0

)
=

(
I 0

B2A
−1 I

) (
A B>

1

0 −S

)

Theorem 1 Let A be non-singular. ThenA is invertibleiff S is invertible.
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Case 3: A singular, symmetric

• a generalized inverseA† satisfyingA = AA †A

• an(n× p)–matrixN whose columns spanKerA

Au + B>λ = f ⇐⇒ f − B>λ ∈ ImA⊥KerA

m m

u = A†(f − B>λ) + Nα N>(f − B>λ) = 0

& The reduced system:

Bu = g

(
BA†B> −BN

−N>B> 0

)(
λ

α

)
=

(
BA†f − g

−N>f

)
⇓

BA†B>λ− BNα = BA†f − g

If A is positive semidefinite, then it corresponds to the algebra in FETI DDM.
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Case 4: A singular, non-symmetric

• a generalized inverseA†

• columns of(n× p)–matricesN, M spanKerA, KerA>, respectively

Au + B>
1 λ = f ⇐⇒ f − B>

1 λ ∈ ImA⊥KerA>

m m

u = A†(f − B>
1 λ) + Nα M>(f − B>

1 λ) = 0

& The reduced system:

B2u = g

(
B2A

†B>
1 −B2N

−M>B>
1 0

)(
λ

α

)
=

(
B2A

†f − g

−M>f

)
⇓

B2A
†B>

1 λ− B2Nα = B2A
†f − g
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Theorem 2 The saddle-point matrixA :=

(
A B>

1

B2 0

)
is invertibleiff

B1 has full row-rank

KerA ∩ Ker B2 = {0}

A Ker B2 ∩ Im B>
1 = {0}

 (NSC)

Remark:The third equality is equivalent to the MinMax condition that is well-
known in the continuous setting:

∃C > 0 : min
u∈KerB2,u6=0

max
v∈KerB1,v 6=0

v>Au

‖v‖‖u‖
≥ C
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The generalized Schur complement:the matrix of the reduced system

S :=

( −B2A
†B>

1 B2N

M>B>
1 0

)

Theorem 3 The following three statements are equivalent:

• The necessary and sufficient condition (NSC) holds.

• A is invertible.

• S is invertible.

Remark: The generalized Schur complementS is not defined uniquely.
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First step of the algorithm = Schur complement reduction:

(
A B>

1
B2 0

) (
u
λ

)
=

(
f
g

)
⇐⇒


(

F G>
1

G2 0

) (
λ
α

)
=

(
d
e

)
u = A†(f − B>

1 λ) + Nα

How to solve thereducedsystem again with the saddle-point structure?

• matrix-vector products via Fµ :=
(
B2

(
A† (B>

1 µ
)))

• G1, G2, d, e may be assembled



1) Again the Schur complement reduction (the second elimination)

Eα = r with E := G2F−1G>
1 , then λ := F−1(d− G>

1 α) and u

(R.K., Appl. Math. 50(2005))

2) Null-space method

(Farhat, Mandel, Roux: FETI DDM, 1994)
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Second step of the algorithm = Null-space method:(
F G>

1
G2 0

) (
λ
α

)
=

(
d
e

)
Two orthogonal projectorsP1 andP2 ontoKerG1 andKerG2:

Pk : Rm 7→ KerGk, Pk := I − G>
k (GkG>

k )−1Gk, k = 1, 2

Property: Ker Pk = Im G>
k ⇐⇒ PkG>

k = 0

• P1 splits the saddle-point structure: P1Fλ + P1G
>
1 α = P1d

P1Fλ = P1d, G2λ = e, α := (G1G
>
1 )−1(G1d− G1Fλ)

• P2 decomposesλ = λIm + λKer , λIm∈ ImG>
2 , λKer ∈KerG2

At first: G2λ = G2λIm = e =⇒ λIm := G>
2 (G2G

>
2 )−1e

At second: P1FλKer = P1(d− FλIm) on Ker G2
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Theorem 4 LetA be invertibel. The linear operatorP1F : Ker G2 7→ Ker G1

is invertible.

Proof.

As both null-spacesKer G1 andKer G2 have the same dimensionm− p, it is
enough to prove thatP1F is injective.

Let µ ∈ Ker G2 be such thatP1Fµ = 0. ThenFµ ∈ Ker P1 = Im G>
1 and,

therefore, there isβ ∈ Rp so that

Fµ = G>
1 β and G2µ = 0.

We obtain (
F G>

1
G2 0

) (
µ
−β

)
=

(
0
0

)
,

where the matrix is the (negative) Schur complement−S that is invertible iff
A is invertibel. Thereforeµ = 0.
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Algorithm PSCM

Step 1.a: AssembleG1 := −N>B>
2 , G2 := −M>B>

1 .

Step 1.b: Assembled := B2A
†f − g, e := −M>f.

Step 1.c: AssembleH1 := (G1G
>
1 )−1, H2 := (G2G

>
2 )−1.

Step 1.d: AssembleλIm := G>
2 H2e, d̃ := P1(d− FλIm).

Step 1.e: Solve P1FλKer = d̃ on Ker G2.

Step 1.f: Assembleλ := λIm + λKer .

Step 2: Assembleα := H1G1(d− Fλ).

Step 3: Assembleu := A†(f − B>
1 λ) + Nα.

• an iterativeprojectedKrylov subspace method for non-symmetric operators
can be used in Step 1.e
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Find λ ∈ Rm so that Fλ = d, where d ∈ Rm.

Algorithm BiCGSTAB[ε, λ0, F, d ] → λ

Initialize: r 0 := d− Fλ0, p0 := r 0, r̃ 0 arbitrary,k := 0

While ‖r k‖ > ε

1◦ p̃k := Fpk

2◦ αk := (r k)>r̃ 0/(p̃k)>r̃ 0

3◦ sk := r k − αkp̃k

4◦ s̃k := Fsk

5◦ ωk := (s̃k)>sk/(s̃k)>s̃k

6◦ λk+1 := λk + αkpk + ωksk

7◦ r k+1 := sk − ωks̃k

8◦ βk+1 := (αk/ωk)(r k+1)>r̃ 0/(r k)>r̃ 0

9◦ pk+1 := r k+1 + βk+1(pk − ωkp̃k)

10◦ k := k + 1

end

(Van der Vorst, 1992)
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Find λ ∈ Ker G2 so that P1Fλ = d̃, where d̃ ∈ Ker G1.

Algorithm ProjBiCGSTAB[ε, λ0, F, P1, P2, d̃ ] → λ

Initialize: λ0 ∈ Ker G2, r 0 := d̃− P1Fλ0, p0 := r 0, r̃ 0 arbitrary,k := 0

While ‖r k‖ > ε

1◦ p̃k := P1Fpk

2◦ αk := (r k)>r̃ 0/(p̃k)>r̃ 0

3◦ sk := r k − αkp̃k

4◦ s̃k := P1Fsk

5◦ ωk := (s̃k)>sk/(s̃k)>s̃k

6◦ λk+1 := λk + αkP2pk + ωkP2sk

7◦ r k+1 := sk − ωks̃k

8◦ βk+1 := (αk/ωk)(r k+1)>r̃ 0/(r k)>r̃ 0

9◦ pk+1 := r k+1 + βk+1(pk − ωkp̃k)

10◦ k := k + 1

end
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Formally solve P2P1Fλ = P2d̃, with λ0 ∈ Ker G2.

Algorithm ProjBiCGSTAB[ε, λ0, F, P1, P2, d̃ ] → λ

Initialize: λ0 ∈ Ker G2, r 0 := P2d̃− P2P1Fλ0, p0 := r 0, r̃ 0, k := 0

While ‖r k‖ > ε

1◦ p̃k := P2P1Fpk

2◦ αk := (r k)>r̃ 0/(p̃k)>r̃ 0

3◦ sk := r k − αkp̃k

4◦ s̃k := P2P1Fsk

5◦ ωk := (s̃k)>sk/(s̃k)>s̃k

6◦ λk+1 := λk + αkpk + ωksk

7◦ r k+1 := sk − ωks̃k

8◦ βk+1 := (αk/ωk)(r k+1)>r̃ 0/(r k)>r̃ 0

9◦ pk+1 := r k+1 + βk+1(pk − ωkp̃k)

10◦ k := k + 1

end
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Consider a family of nested partitions of the fictitious domainΩ with stepsizes:

hj, 0 ≤ j ≤ J

• the first iterate is determined by the result from the nearest lower level

• the terminating toleranceε on each level isε := νhp
j

Algorithm: Hierarchical Multigrid Scheme

Initialize: Letλ0,(0)
Ker ∈ Ker G(0)

2 be given.

ProjBiCGSTAB[νhp
0, λ

0,(0)
Ker , F(0), P(0)

1 , P(0)
2 , d̃

(0)
] → λ

(0)
Ker .

For j = 1, . . . , J,

1◦ prolongateλ(j−1)
Ker → λ̃

0,(j)
Ker

2◦ projectλ̃0,(j)
Ker → λ

0,(j)
Ker := P(j)

2 λ̃
0,(j)
Ker

3◦ ProjBiCGSTAB[νhp
j , λ

0,(j)
Ker , F(j), P(j)

1 , P(j)
2 , d̃

(j)
] → λ

(j)
Ker

end

Return:λKer := λ
(J)
Ker .
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Motivation

u∗ . . . exact solution of PDE problem
u . . . FEM approximation with respect toh with the convergence ratep

‖u∗ − u‖ ≤ Chp, Au = f

uk . . . thek-th iteration

uk −→ u, Auk = f + r k

When should be iterations terminated?‖r k‖ ≤ ε, ε =???

‖u∗ − uk‖ ≤ ‖u∗ − u‖ + ‖u− uk‖
≤ Chp + ‖A−1r k‖
≤ Chp + ‖A−1‖ · ε
≤ (C + ‖A−1‖ν)hp if ε := νhp

Control parameterν may by choosen experimentally;ν ≈ KC/‖A−1‖.
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Circulant matrices and Fourier transform

A =


a1 an . . . a2
a2 a1 . . . a3
a3 a2 . . . a4
... ... . . . ...

an an−1 . . . a1

 =
(
a, Ta, T2a, · · · , Tn−1a

)

T̂kf (ω) =

∫
R

f (x− k)e−ixω dx = e−ikωf̂ (ω)

XA = (Dx0, Dx1, Dx2, · · · , Dxn−1) = DX

Lamma: Let A be circulant. Then

A = X−1DX,

whereX is the DFT matrix andD = diag(â), â = Xa, a = A(:, 1).
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Multiplying procedure: A†v := X−1
(
D† (Xv)

)
. . . Moore-Penrose

0◦ d := fft(a)

1◦ v := fft(v)

2◦ v := v. ∗ d−1

3◦ A†v := ifft(v)

O(2n log2 n)

Multiplying procedures: Nα, N>v (and Mα, M>v)

As AN = 0, the matrixN may be formed by eigenvectors corresponding to zero
eigenvalues.

I − DD† = diag(1, 1, 1, 0, . . . , 0) =⇒ X−1 = (N, Y), X−1 =

(
N>

Y

)

Therefore we can define the operation:ind(α) =

(
α
0

)
∈ Rn

1◦ vα := ind(α) 1◦ v := ifft(v)

2◦ Nα := ifft(vα) 2◦ N>v := ind−1(v)

}
O(n log2 n)
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Kronecker product of matrices: Ax ∈ Rnx×nx, Ay ∈ Rny×ny

Ax ⊗ Ay =

 ay
11Ax . . . ay

1ny
Ax

... . . . ...
ay

ny1Ax . . . ay
nyny

Ax


Lemma 1: (Ax ⊗ Ay)(Bx ⊗ By) = AxBx ⊗ AyBy

(Ax ⊗ Ay)
† = A†

x ⊗ A†
y

N = Nx ⊗ Ny

Lemma 2: (Ax ⊗ Ay)v = vec(AxVA>
y ), whereV = vec−1(v).

V = (v1, . . . , vny
) ∈ Rnx×ny ⇐⇒ vec(V) =

 v1
...

vny

 ∈ Rnxny
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Kronecker product and circulant matrices: Let Ax, Ay be circulant then:

A = Ax ⊗ I y + Ix ⊗ Ay

= X−1
x DxXx ⊗ X−1

y Xy + X−1
x Xx ⊗ X−1

y DyXy

= (X−1
x ⊗ X−1

y )(Dx ⊗ I y + Ix ⊗ Dy)(Xx ⊗ Xy)

= X−1DX

with
X = Xx ⊗ Xy (DFT matrix in 2D)

D = Dx ⊗ I y + Ix ⊗ Dy (diagonal matrix)

whereXx, Xy are the DFT matrices,Dx = diag(Xxax), Dy = diag(Xyay) and
ax = Ax(:, 1), ay = Ay(:, 1), respectively.
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Multiplying procedure: A†v := X−1
(
D† (Xv)

)
0◦ dx := fft(ax), dy := fft(ay)

V := vec−1(v)

1◦ V := fft(V)

2◦ V := fft(V>)>

3◦ V := vec−1(D†vec(V))

4◦ V := ifft(V)

5◦ V := ifft(V>)>

A†v := vec(V)

Number of arithmetic operations :

O(2n(log2 nx + log2 ny) + n) ≈ O(n log2 n), n = nxny

Multiplying procedures: Nα, N>v, Mα, M>v . . . analogous
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CONCLUSIONS

• The method for solving non-symmetric sadddle-point systems with singu-
lar diagonal blocks was presented. It combines the Schur complement re-
duction with the null-space method.

• It can be understood as a generalization of the algebraic description of FETI
DDM for non-symmetric and possibly indefinite cases.

• In connection with FDM, it presents the highly efficient solver for solving
separable PDE problems. The fast implementation based on the Poisson-
like solver is ”matrix free” as the stiffness matrix is not needed to be formed
explicitly.
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