Projected Schur Complement Method for Solving Non-Symmetric Saddle-Point Systems (Arising from Fictitious Domain Approaches)

> Jaroslav Haslinger, Charles University, Prague Tomáš Kozubek, VŠB–TU Ostrava <u>Radek Kučera</u>, VŠB–TU Ostrava

> > SNA'07, Januar 22, Ostrava

Preliminaries on saddle-point systems

Projected Schur complement method

Projected BiCGSTAB algorithm

Hierarchical multigrid

Poisson-like solver for singular matrices

Preliminaries on saddle-point systems

Projected Schur complement method

Projected BiCGSTAB algorithm

Hierarchical multigrid

Poisson-like solver for singular matrices

Formulation: Non-symmetric sadle-point system

$$\left(\begin{array}{cc} \mathbf{A} & \mathbf{B}_1^\top \\ \mathbf{B}_2 & \mathbf{0} \end{array}\right) \left(\begin{array}{c} \mathbf{u} \\ \boldsymbol{\lambda} \end{array}\right) = \left(\begin{array}{c} \mathbf{f} \\ \mathbf{g} \end{array}\right)$$

Assumptions

- A ... non-symmetric $(n \times n)$ -matrix
 - ... singular with $p = \dim \operatorname{Ker} \mathbf{A}$ as $V_h \approx H^1_{per}(\Omega)$
 - ... actions of A^{\dagger} can be computed by Poisson-like solver based on FFT
- $\mathbf{B}_1, \mathbf{B}_2 \dots$ full rank $(m \times n)$ -matrices, $m \ll n$
 - ... sparse, their actions are cheap
 - ... $\mathbf{B}_1 \neq \mathbf{B}_2$ as $\Gamma \neq \gamma$ or as mixed boudary condions are prescribed

Algorithms based on Schur complement reductions

- Case 1: symmetric non-singular
- Case 2: non-symmetric non-singular
- Case 3: symmetric singular
- Case 4: non-symmetric singular

Case 1: symmetric non-singular (positive definite A)

$$\begin{pmatrix} \mathbf{A} & \mathbf{B}^{\top} \\ \mathbf{B} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ \boldsymbol{\lambda} \end{pmatrix} = \begin{pmatrix} \mathbf{f} \\ \mathbf{g} \end{pmatrix} \implies \mathbf{u} = \mathbf{A}^{-1}(\mathbf{f} - \mathbf{B}^{\top}\boldsymbol{\lambda}) \\ \implies \mathbf{B}\mathbf{A}^{-1}\mathbf{B}^{\top}\boldsymbol{\lambda} = \mathbf{B}\mathbf{A}^{-1}\mathbf{f} - \mathbf{g}$$

Algorithm

Step 1: Assemble
$$\mathbf{d} := \mathbf{B}\mathbf{A}^{-1}\mathbf{f} - \mathbf{g}$$
.

Step 2: Solve $-\mathbf{S}\boldsymbol{\lambda} = \mathbf{d}$ by the CGM with $\mathbf{S} := -\mathbf{B}\mathbf{A}^{-1}\mathbf{B}^{\top}$.

Step 3: Assemble
$$\mathbf{u} = \mathbf{A}^{-1}(\mathbf{f} - \mathbf{B}^{\top} \boldsymbol{\lambda})$$
.

Matrix-vector products $-S\mu$ are computed by:

$$-\mathbf{S}\boldsymbol{\mu} := \left(\mathbf{B}\left(\mathbf{A}^{-1}\left(\mathbf{B}^{\top}\boldsymbol{\mu}
ight)
ight)$$

Algorithm requires $\mathcal{O}((m+2)n_{A^{\dagger}})$ flops in the worst case.

Case 2: non-symmetric non-singular

$$\begin{pmatrix} \mathbf{A} & \mathbf{B}_1^\top \\ \mathbf{B}_2 & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ \boldsymbol{\lambda} \end{pmatrix} = \begin{pmatrix} \mathbf{f} \\ \mathbf{g} \end{pmatrix} \implies \mathbf{u} = \mathbf{A}^{-1}(\mathbf{f} - \mathbf{B}_1^\top \boldsymbol{\lambda}) \\ \implies \mathbf{B}_2 \mathbf{A}^{-1} \mathbf{B}_1^\top \boldsymbol{\lambda} = \mathbf{B}_2 \mathbf{A}^{-1} \mathbf{f} - \mathbf{g}$$

Algorithm is analogous.

- the Schur complement $\mathbf{S} := -\mathbf{B}_2 \mathbf{A}^{-1} \mathbf{B}_1^{\top}$ is non-symmetric
- a Krylov method for non-symmetric matrices is required (GMRES, BiCG, ...)

$$\mathcal{A} := egin{pmatrix} \mathbf{A} & \mathbf{B}_1^\top \ \mathbf{B}_2 & \mathbf{0} \end{pmatrix} = egin{pmatrix} \mathbf{I} & \mathbf{0} \ \mathbf{B}_2 \mathbf{A}^{-1} & \mathbf{I} \end{pmatrix} egin{pmatrix} \mathbf{A} & \mathbf{B}_1^\top \ \mathbf{0} & \mathbf{S} \end{pmatrix}$$

Theorem. Let A be non-singular. Then \mathcal{A} is invertible iff S is invertible.

Case 3: symmetric singular (positive semidefinite A, FETI)

- a generalized inverse \mathbf{A}^{\dagger} satisfying $\mathbf{A} = \mathbf{A}\mathbf{A}^{\dagger}\mathbf{A}$
- \bullet an $(n \times p)$ –matrix ${\bf N}$ whose columns span $\mathit{Ker}\,{\bf A}$

Case 4: non-symmetric and singular

- a generalized inverse \mathbf{A}^{\dagger} satisfying $\mathbf{A} = \mathbf{A}\mathbf{A}^{\dagger}\mathbf{A}$
- an $(n \times p)$ -matrices N, M whose columns span Ker A, Ker A^T, respectively

Theorem 1. The saddle-point matrix $\mathcal{A} := \begin{pmatrix} \mathbf{A} & \mathbf{B}_1^+ \\ \mathbf{B}_2 & \mathbf{0} \end{pmatrix}$ is invertible iff

$$\begin{array}{c} \mathbf{B}_{1}, \mathbf{B}_{2} \text{ have full ranks} \\ Ker \mathbf{A} \cap Ker \mathbf{B}_{2} = \{\mathbf{0}\} \\ \mathbf{A} Ker \mathbf{B}_{2} \cap Im \mathbf{B}_{1}^{\top} = \{\mathbf{0}\} \end{array} \right\}$$
(NSC)

The generalized Schur complement:

$$\mathcal{S} := \left(egin{array}{cc} -\mathbf{B}_2\mathbf{A}^\dagger\mathbf{B}_1^\top & \mathbf{B}_2\mathbf{N} \ \mathbf{M}^\top\mathbf{B}_1^\top & \mathbf{0} \end{array}
ight)$$

Theorem 2. The following three statements are equivalent:

- The necessary and sufficient condition (NSC) holds.
- \mathcal{A} is invertible.
- S is invertible.

Preliminaries on saddle-point systems

Projected Schur complement method

Projected BiCGSTAB algorithm

Hierarchical multigrid

Poisson-like solver for singular matrices

New notation in the reduced system:

$$\mathbf{F} = \mathbf{B}_2 \mathbf{A}^{\dagger} \mathbf{B}_1^{\top}, \mathbf{G}_1 = -\mathbf{N}^{\top} \mathbf{B}_2^{\top}, \mathbf{G}_2 = -\mathbf{M}^{\top} \mathbf{B}_1^{\top}, \mathbf{d} = \mathbf{B}_2 \mathbf{A}^{\dagger} \mathbf{f} - \mathbf{g}, \mathbf{e} = -\mathbf{M}^{\top} \mathbf{f}$$

$$\left(\begin{array}{cc} \mathbf{F} & \mathbf{G}_1^\top \\ \mathbf{G}_2 & \mathbf{0} \end{array}\right) \left(\begin{array}{c} \boldsymbol{\lambda} \\ \boldsymbol{\alpha} \end{array}\right) = \left(\begin{array}{c} \mathbf{d} \\ \mathbf{e} \end{array}\right)$$

 $\begin{array}{ll} \underline{\textit{Two orthogonal projectors:}} & \mathbf{P}_1 : \mathbb{R}^m \mapsto \textit{Ker} \, \mathbf{G}_1, & \mathbf{P}_1 = \mathbf{I} - \mathbf{G}_1^\top (\mathbf{G}_1 \mathbf{G}_1^\top)^{-1} \mathbf{G}_1 \\ & \mathbf{P}_2 : \mathbb{R}^m \mapsto \textit{Ker} \, \mathbf{G}_2, & \mathbf{P}_2 = \mathbf{I} - \mathbf{G}_2^\top (\mathbf{G}_2 \mathbf{G}_2^\top)^{-1} \mathbf{G}_2 \end{array}$

• **P**₁ splits the saddle-point structure of the system:

 $\mathbf{P}_1\mathbf{F}\boldsymbol{\lambda} = \mathbf{P}_1\mathbf{d}, \quad \mathbf{G}_2\boldsymbol{\lambda} = \mathbf{e}$

• \mathbf{P}_2 decomposes $\boldsymbol{\lambda} = \boldsymbol{\lambda}_{Im} + \boldsymbol{\lambda}_{Ker}, \quad \boldsymbol{\lambda}_{Im} \in Im \, \mathbf{G}_2^{\top}, \quad \boldsymbol{\lambda}_{Ker} \in Ker \, \mathbf{G}_2.$

At first: $\boldsymbol{\lambda}_{Im} = \mathbf{G}_2^{\top} (\mathbf{G}_2 \mathbf{G}_2^{\top})^{-1} \mathbf{e}$

At second: $\mathbf{P}_1 \mathbf{F} \boldsymbol{\lambda}_{Ker} = \mathbf{P}_1 (\mathbf{d} - \mathbf{F} \boldsymbol{\lambda}_{Im})$ on $Ker \mathbf{G}_2$

Theorem 3. The linear operator $\mathbf{P}_1\mathbf{F} \colon Ker \mathbf{G}_2 \mapsto Ker \mathbf{G}_1$ is invertible.

Proof.

As both null-spaces $Ker \mathbf{G}_1$ and $Ker \mathbf{G}_2$ have the same dimension, it is enough to prove that $\mathbf{P}_1 \mathbf{F}$ is injective.

Let $\mu \in Ker \mathbf{G}_2$ be such that $\mathbf{P}_1 \mathbf{F} \mu = \mathbf{0}$. Then $\mathbf{F} \mu \in Ker \mathbf{P}_1 = Im \mathbf{G}_1^{\top}$ and, therefore, there is $\boldsymbol{\beta} \in R^l$ so that

 $\mathbf{F}\boldsymbol{\mu} = \mathbf{G}_1^\top \boldsymbol{\beta}$ and $\mathbf{G}_2 \boldsymbol{\mu} = \mathbf{0}$.

Letting $\mathbf{y} = (\boldsymbol{\mu}^{\top}, -\boldsymbol{\beta}^{\top})^{\top}$, we get $-\boldsymbol{\mathcal{S}}\mathbf{y} = \mathbf{0}$ implying $\boldsymbol{\mu} = \mathbf{0}$ as $\boldsymbol{\mathcal{S}}$ is invertible.

Algorithm PSCM

Step 1.a: Assemble
$$\mathbf{G}_1 := -\mathbf{N}^\top \mathbf{B}_2^\top$$
, $\mathbf{G}_2 := -\mathbf{M}^\top \mathbf{B}_1^\top$.

Step 1.b: Assemble $\mathbf{d} := \mathbf{B}_2 \mathbf{A}^{\dagger} \mathbf{f} - \mathbf{g}, \ \mathbf{e} := -\mathbf{M}^{\top} \mathbf{f}.$

Step 1.c: Assemble
$$\mathbf{H}_1 := (\mathbf{G}_1 \mathbf{G}_1^{\top})^{-1}, \ \mathbf{H}_2 := (\mathbf{G}_2 \mathbf{G}_2^{\top})^{-1}.$$

- Step 1.d: Assemble $\lambda_{Im} := \mathbf{G}_2^\top \mathbf{H}_2 \mathbf{e}, \ \tilde{\mathbf{d}} := \mathbf{P}_1 (\mathbf{d} \mathbf{F} \boldsymbol{\lambda}_{Im}).$
- Step 1.e: Solve $\mathbf{P}_1 \mathbf{F} \boldsymbol{\lambda}_{Ker} = \mathbf{d}$ on $Ker \mathbf{G}_2$.

Step 1.f: Assemble
$$\lambda := \lambda_{Im} + \lambda_{Ker}$$
.

- Step 2: Assemble $\alpha := \mathbf{H}_1(\mathbf{d} \mathbf{F}\boldsymbol{\lambda})$.
- Step 3: Assemble $\mathbf{u} = \mathbf{A}^{\dagger}(\mathbf{f} \mathbf{B}_{1}^{\top}\boldsymbol{\lambda}) + \mathbf{N}\boldsymbol{\alpha}$.

An iterative projected Krylov subspace method for non-symmetric operators can be used in Step 1.e.

Matrix-vector products $\mathbf{F}\boldsymbol{\mu}$ and $\mathbf{P}_k\boldsymbol{\mu}$, k = 1, 2 are computed by:

$$\mathbf{F}oldsymbol{\mu} := \left(\mathbf{B}_2 \left(\mathbf{A}^\dagger \left(\mathbf{B}_1^ op oldsymbol{\mu}
ight)
ight), \quad \mathbf{P}_k oldsymbol{\mu} := oldsymbol{\mu} - \left(\mathbf{G}_k^ op \left(\mathbf{H}_k \left(\mathbf{G}_k oldsymbol{\mu}
ight)
ight)
ight).$$

Preliminaries on saddle-point systems

Projected Schur complement method

Projected BiCGSTAB algorithm

Hierarchical multigrid

Poisson-like solver for singular matrices

 $\mathbf{F}\boldsymbol{\lambda} = \mathbf{d}$ on R^m

Algorithm BiCGSTAB $[\epsilon, \lambda^0, \mathbf{F}, \mathbf{d}] \rightarrow \lambda$ Initialize: $\mathbf{r}^0 := \mathbf{d} - \mathbf{F} \boldsymbol{\lambda}^0$, $\mathbf{p}^0 := \mathbf{r}^0$, $\tilde{\mathbf{r}}^0$ arbitrary, k := 0While $\|\mathbf{r}^k\| > \epsilon$ 1° $\tilde{\mathbf{p}}^k := \mathbf{F}\mathbf{p}^k$ $lpha_k := (\mathbf{r}^k)^\top \widetilde{\mathbf{r}}^0 / (\widetilde{\mathbf{p}}^k)^\top \widetilde{\mathbf{r}}^0$ 2° 3° $\mathbf{s}^k := \mathbf{r}^k - \alpha_k \tilde{\mathbf{p}}^k$ $4^{\circ} \quad \tilde{\mathbf{s}}^k := \mathbf{F}\mathbf{s}^k$ $\omega_k := (\widetilde{\mathbf{s}}^k)^{ op} \mathbf{s}^k / (\widetilde{\mathbf{s}}^k)^{ op} \widetilde{\mathbf{s}}^k$ 5° $oldsymbol{\lambda}^{k+1} := oldsymbol{\lambda}^k + lpha_k oldsymbol{p}^k + \omega_k oldsymbol{s}^k$ 6° 7° $\mathbf{r}^{k+1} := \mathbf{s}^k - \omega_k \tilde{\mathbf{s}}^k$ $eta_{k+1} := (lpha_k/\omega_k)(\mathbf{r}^{k+1})^{ op} \widetilde{\mathbf{r}}^0/(\mathbf{r}^k)^{ op} \widetilde{\mathbf{r}}^0$ 8° $\mathbf{p}^{k+1} := \mathbf{r}^{k+1} + \beta_{k+1} (\mathbf{p}^k - \omega_k \tilde{\mathbf{p}}^k)$ 9° 10° k := k + 1end

 $\mathbf{P}_1 \mathbf{F} \boldsymbol{\lambda} = \tilde{\mathbf{d}}$ on $Ker \mathbf{G}_2$

Algorithm ProjBiCGSTAB $[\epsilon, \lambda^0, \mathbf{F}, \mathbf{P}_1, \mathbf{P}_2, \mathbf{d}] \rightarrow \lambda$ Initialize: $\lambda^0 \in Ker \mathbf{G}_2$, $\mathbf{r}^0 := \tilde{\mathbf{d}} - \mathbf{P}_1 \mathbf{F} \lambda^0$, $\mathbf{p}^0 := \mathbf{r}^0$, $\tilde{\mathbf{r}}^0$ arbitrary, k := 0While $\|\mathbf{r}^k\| > \epsilon$ 1° $\widetilde{\mathbf{p}}^k := \mathbf{P}_1 \mathbf{F} \mathbf{p}^k$ $\alpha_k := (\mathbf{r}^k)^\top \tilde{\mathbf{r}}^0 / (\tilde{\mathbf{p}}^k)^\top \tilde{\mathbf{r}}^0$ 2° 3° $\mathbf{s}^{k} := \mathbf{r}^{k} - \alpha_{k} \tilde{\mathbf{p}}^{k}$ 4° $\tilde{\mathbf{s}}^k := \mathbf{P}_1 \mathbf{F} \mathbf{s}^k$ $\omega_k := (\widetilde{\mathbf{s}}^k)^{ op} \mathbf{s}^k / (\widetilde{\mathbf{s}}^k)^{ op} \widetilde{\mathbf{s}}^k$ 5° $\boldsymbol{\lambda}^{k+1} := \boldsymbol{\lambda}^k + \alpha_k \mathbf{P}_2 \mathbf{p}^k + \omega_k \mathbf{P}_2 \mathbf{s}^k$ 6° 7° $\mathbf{r}^{k+1} := \mathbf{s}^k - \omega_k \tilde{\mathbf{s}}^k$ $\beta_{k+1} := (\alpha_k/\omega_k) (\mathbf{r}^{k+1})^\top \widetilde{\mathbf{r}}^0/(\mathbf{r}^k)^\top \widetilde{\mathbf{r}}^0$ 8° $\mathbf{p}^{k+1} := \mathbf{r}^{k+1} + \beta_{k+1}(\mathbf{p}^k - \omega_k \tilde{\mathbf{p}}^k)$ 9° 10° k := k + 1end

 $\mathbf{P}_1 \mathbf{F} \boldsymbol{\lambda} = \tilde{\mathbf{d}}$ on $Ker \mathbf{G}_2$

Algorithm ProjBiCGSTAB $[\epsilon, \lambda^0, \mathbf{F}, \mathbf{P}_1, \mathbf{P}_2, \mathbf{d}] \rightarrow \lambda$ Initialize: $\lambda^0 \in Ker \mathbf{G}_2, \mathbf{r}^0 := \mathbf{P}_2(\tilde{\mathbf{d}} - \mathbf{P}_1 \mathbf{F} \lambda^0), \mathbf{p}^0 := \mathbf{r}^0, \tilde{\mathbf{r}}^0, k := 0$ While $\|\mathbf{r}^k\| > \epsilon$ 1° $\widetilde{\mathbf{p}}^k := \mathbf{P}_2 \mathbf{P}_1 \mathbf{F} \mathbf{p}^k$ 2° $\alpha_k := (\mathbf{r}^k)^\top \tilde{\mathbf{r}}^0 / (\tilde{\mathbf{p}}^k)^\top \tilde{\mathbf{r}}^0$ 3° $\mathbf{s}^{k} := \mathbf{r}^{k} - \alpha_{k} \tilde{\mathbf{p}}^{k}$ 4° $\tilde{\mathbf{s}}^k := \mathbf{P}_2 \mathbf{P}_1 \mathbf{F} \mathbf{s}^k$ 5° $\omega_k := (\widetilde{\mathbf{s}}^k)^\top \mathbf{s}^k / (\widetilde{\mathbf{s}}^k)^\top \widetilde{\mathbf{s}}^k$ $oldsymbol{\lambda}^{k+1} := oldsymbol{\lambda}^k + lpha_k oldsymbol{p}^k + \omega_k oldsymbol{s}^k$ 6° 7° $\mathbf{r}^{k+1} := \mathbf{s}^k - \omega_k \tilde{\mathbf{s}}^k$ $eta_{k+1} := (lpha_k/\omega_k)(\mathbf{r}^{k+1})^{ op} \widetilde{\mathbf{r}}^0/(\mathbf{r}^k)^{ op} \widetilde{\mathbf{r}}^0$ 8° $\mathbf{p}^{k+1} := \mathbf{r}^{k+1} + \beta_{k+1}(\mathbf{p}^k - \omega_k \tilde{\mathbf{p}}^k)$ 9° 10° k := k + 1end

Preliminaries on saddle-point systems

Projected Schur complement method

Projected BiCGSTAB algorithm

Hierarchical multigrid

Poisson-like solver for singular matrices

Consider a family of nested partitions of the fictitious domain Ω with stepsizes:

$$h_j, \quad 0 \le j \le J$$

- the first iterate is determined by the result from the nearest lower level
- the terminating tolerance ϵ on each level is $\epsilon := \nu h_i^p$

Algorithm: Hierarchical Multigrid Scheme Initialize: Let $\lambda_{Ker}^{0,(0)} \in Ker(\mathbf{G}_2^{(0)})$ be given. ProjBiCGSTAB[$\nu h_0^p, \boldsymbol{\lambda}_{Ker}^{0,(0)}, \mathbf{F}^{(0)}, \mathbf{P}_1^{(0)}, \mathbf{P}_2^{(0)}, \tilde{\mathbf{d}}^{(0)}] \rightarrow \boldsymbol{\lambda}_{Ker}(0).$ **For** j = 1, ..., J. prolongate $\boldsymbol{\lambda}_{Ker}^{(j-1)}
ightarrow ilde{\boldsymbol{\lambda}}_{Ker}^{(j,j)}$ 1° project $\tilde{\lambda}_{Ker}^{0,(j)} \to \lambda_{Ker}^{0,(j)} := \mathbf{P}_2^{(j)} \tilde{\lambda}_{Ker}^{0,(j)}$ 2° ProjBiCGSTAB $[\nu h_i^p, \boldsymbol{\lambda}_{Ker}^{0,(j)}, \mathbf{F}^{(j)}, \mathbf{P}_1^{(j)}, \mathbf{P}_2^{(j)}, \tilde{\mathbf{d}}^{(j)}] \rightarrow \boldsymbol{\lambda}_{Ker}^{(j)}$ 3° end Return: $\lambda_{Ker} := \lambda_{Ker}^{(J)}$.

Preliminaries on saddle-point systems

Projected Schur complement method

Projected BiCGSTAB algorithm

Hierarchical multigrid

Poisson-like solver for singular matrices

Circulant matrices and Fourier transform

$$\mathbf{A} = \begin{pmatrix} a_1 & a_n & \dots & a_2 \\ a_2 & a_1 & \dots & a_3 \\ a_3 & a_2 & \dots & a_4 \\ \vdots & \vdots & \ddots & \vdots \\ a_n & a_{n-1} & \dots & a_1 \end{pmatrix} = (\mathbf{a}, \mathbf{T}\mathbf{a}, \mathbf{T}^2\mathbf{a}, \cdots, \mathbf{T}^{n-1}\mathbf{a})$$

$$\widehat{\mathcal{T}_k f}(\omega) = \int_R f(x-k) e^{-ix\omega} \, dx = e^{-ik\omega} \widehat{f}(\omega)$$

$$\mathbf{X}\mathbf{A} = (\mathbf{D}\mathbf{x}_0, \mathbf{D}\mathbf{x}_1, \mathbf{D}\mathbf{x}_2, \cdots, \mathbf{D}\mathbf{x}_{n-1}) = \mathbf{D}\mathbf{X}$$

Let A be circulant. Then

$$\mathbf{A} = \mathbf{X}^{-1} \mathbf{D} \mathbf{X},$$

where **X** is the DFT matrix and $\mathbf{D} = diag(\hat{\mathbf{a}}), \hat{\mathbf{a}} = \mathbf{X}\mathbf{a}, \mathbf{a} = \mathbf{A}(:, 1).$

<u>Multiplying procedure:</u> $\mathbf{A}^{\dagger}\mathbf{v} = \mathbf{X}^{-1} \left(\mathbf{D}^{\dagger} \left(\mathbf{X} \mathbf{v} \right) \right)$... Moore-Penrose

$$\begin{array}{ll} 0^{\circ} & \mathbf{d} := \mathtt{fft}(\mathbf{a}) \\ 1^{\circ} & \mathbf{v} := \mathtt{fft}(\mathbf{v}) \\ 2^{\circ} & \mathbf{v} := \mathbf{v} \cdot \ast \mathbf{d}^{-1} \\ 3^{\circ} & \mathbf{A}^{\dagger}\mathbf{v} := \mathtt{ifft}(\mathbf{v}) \end{array} \right\} \mathcal{O}(2n\log_2 n) \\ \end{array}$$

Multiplying procedures: $\mathbf{N}\boldsymbol{\alpha}$, $\mathbf{N}^{\top}\mathbf{v}$ and $\mathbf{M}\boldsymbol{\alpha}$, $\mathbf{M}^{\top}\mathbf{v}$

$$\mathbf{I} - \mathbf{D}\mathbf{D}^{\dagger} = \operatorname{diag}(1, 1, 1, 0, \dots, 0) \implies \mathbf{X}^{-1} = (\mathbf{N}, \mathbf{Y})$$

Therefore we can define the operation: $ind(\alpha) = \begin{pmatrix} \alpha \\ 0 \end{pmatrix} \in R^n$

$$\begin{array}{ll} 1^{\circ} & \mathbf{v}_{\alpha} := \operatorname{ind}(\alpha) & 1^{\circ} & \mathbf{v} := \operatorname{ifft}(\mathbf{v}) \\ 2^{\circ} & \mathbf{N}\alpha := \operatorname{ifft}(\mathbf{v}_{\alpha}) & 2^{\circ} & \mathbf{N}^{\top}\mathbf{v} := \operatorname{ind}^{-1}(\mathbf{v}) \end{array} \right\} \quad \mathcal{O}(n \log_2 n)$$

Kronecker product of matrices: $\mathbf{A}_x \in R^{n_x \times n_x}, \mathbf{A}_y \in R^{n_y \times n_y}$

$$\mathbf{A}_x \otimes \mathbf{A}_y = \begin{pmatrix} a_{11}^y \mathbf{A}_x & \dots & a_{1n_y}^y \mathbf{A}_x \\ \vdots & \ddots & \vdots \\ a_{n_y1}^y \mathbf{A}_x & \dots & a_{n_yn_y}^y \mathbf{A}_x \end{pmatrix}$$

Lemma 1: $(\mathbf{A}_x \otimes \mathbf{A}_y)(\mathbf{B}_x \otimes \mathbf{B}_y) = \mathbf{A}_x \mathbf{B}_x \otimes \mathbf{A}_y \mathbf{B}_y$ $(\mathbf{A}_x \otimes \mathbf{A}_y)^{\dagger} = \mathbf{A}_x^{\dagger} \otimes \mathbf{A}_y^{\dagger}$ $\mathbf{N} = \mathbf{N}_x \otimes \mathbf{N}_y$

Lemma 2: $(\mathbf{A}_x \otimes \mathbf{A}_y)\mathbf{v} = \operatorname{vec}(\mathbf{A}_x \mathbf{V} \mathbf{A}_y^{\top}), \text{ where } \mathbf{V} = \operatorname{vec}^{-1}(\mathbf{v}).$

$$\mathbf{V} = (\mathbf{v}_1, \dots, \mathbf{v}_{n_y}) \in R^{n_x \times n_y} \iff \operatorname{vec}(\mathbf{V}) = \begin{pmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_{n_y} \end{pmatrix} \in R^{n_x n_y}$$

● First ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Qu

Kronecker product and circulant matrices: Let A_x, A_y be circulant, then:

$$\mathbf{A} = \mathbf{A}_x \otimes \mathbf{I}_y + \mathbf{I}_x \otimes \mathbf{A}_y$$

= $\mathbf{X}_x^{-1} \mathbf{D}_x \mathbf{X}_x \otimes \mathbf{X}_y^{-1} \mathbf{X}_y + \mathbf{X}_x^{-1} \mathbf{X}_x \otimes \mathbf{X}_y^{-1} \mathbf{D}_y \mathbf{X}_y$
= $(\mathbf{X}_x^{-1} \otimes \mathbf{X}_y^{-1}) (\mathbf{D}_x \otimes \mathbf{I}_y + \mathbf{I}_x \otimes \mathbf{D}_y) (\mathbf{X}_x \otimes \mathbf{X}_y)$
= $\mathbf{X}^{-1} \mathbf{D} \mathbf{X}$

with

 $\mathbf{X} = \mathbf{X}_x \otimes \mathbf{X}_y \qquad \text{(DFT matrix in 2D)}$ $\mathbf{D} = \mathbf{D}_x \otimes \mathbf{I}_y + \mathbf{I}_x \otimes \mathbf{D}_y \qquad \text{(diagonal matrix)}$

where \mathbf{X}_x , \mathbf{X}_y are the DFT matrices, $\mathbf{D}_x = \text{diag}(\mathbf{X}_x \mathbf{a}_x)$, $\mathbf{D}_y = \text{diag}(\mathbf{X}_y \mathbf{a}_y)$ and $\mathbf{a}_x = \mathbf{A}_x(:, 1)$, $\mathbf{a}_y = \mathbf{A}_y(:, 1)$, respectively.

Multiplying procedure: $\mathbf{A}^{\dagger}\mathbf{v} = \mathbf{X}^{-1} \left(\mathbf{D}^{\dagger} \left(\mathbf{X} \mathbf{v} \right) \right)$

$$\begin{array}{ll} 0^{\circ} & \mathbf{d}_{x} := \mathtt{fft}(\mathbf{a}_{x}), \ \mathbf{d}_{y} := \mathtt{fft}(\mathbf{a}_{y}) \\ & \mathbf{V} := \mathtt{vec}^{-1}(\mathbf{v}) \end{array}$$

$$1^{\circ}$$
 V := fft(V)

$$2^{\circ} \quad \mathbf{V} := \mathtt{fft}(\mathbf{V}^{\top})^{\top}$$

$$B^\circ \quad \mathbf{V} := \mathtt{vec}^{-1}(\mathbf{D}^\dagger\mathtt{vec}(\mathbf{V}))$$

$$4^\circ$$
 $\mathbf{V}:=\mathtt{ifft}(\mathbf{V})$

5°
$$\mathbf{V} := \mathtt{ifft}(\mathbf{V}^{\top})^{\top}$$

 $\mathbf{A}^{\dagger}\mathbf{v} := \mathtt{vec}(\mathbf{V})$

Number of arithmetic operations :

$$\mathcal{O}(2n(\log_2 n_x + \log_2 n_y) + n) \approx \mathcal{O}(n\log_2 n), \quad n = n_x n_y$$

Multiplying procedures: $\mathbf{N}\alpha$, $\mathbf{N}^{\top}\mathbf{v}$, $\mathbf{M}\alpha$, $\mathbf{M}^{\top}\mathbf{v}$... analogous

Preliminaries on saddle-point systems

Projected Schur complement method

Projected BiCGSTAB algorithm

Hierarchical multigrid

Poisson-like solver for singular matrices

$$\begin{split} \Omega &= (0,1) \times (0,1) \\ \omega &= \{ (x,y) \in \mathbb{R}^2 : (x-0.5)^2 + (y-0.5)^2 = 0.3^2 \} \\ \begin{cases} -\Delta u \ = \ f & \text{in } \omega \\ u \ = \ g & \text{on } \gamma \end{split}$$

where the right hand-sides f, g are chosen appropriately to the exact solution

$$\hat{u}_{ex}(x,y) = 100((x-0.5)^3 - (y-0.5)^3) - x^2.$$

The auxiliary boundary Γ is obtained by shifting γ in the normal direction with

 $\delta = 8h.$

● First ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Qui

Classical FDM

Step <i>h</i>	n/m	Iters.	C.time[s]	$\operatorname{Err}_{L^2(\omega)}$	$\operatorname{Err}_{H^1(\omega)}$	$\operatorname{Err}_{L^2(\partial\omega)}$
1/128	16641/35	8	0.14	2.0860e-2	1.9647e+0	6.6516e-2
1/256	66049/62	9	0.56	1.1092e-2	1.2884e+0	3.2175e-2
1/512	263169/110	12	5.19	5.3989e-3	8.6517e-1	1.5019e-2
1/1024	1050625/198	20	33.05	2.7453e-3	6.0511e-1	7.3265e-3
1/2048	4198401/360	26	167.00	1.3349e-3	4.4015e-1	3.6245e-3
Convergence rates:				0.995	0.541	1.053

New FDM, PSCM

Step h	n/m	Iters.	C.time[s]	$\operatorname{Err}_{L^2(\omega)}$	$\operatorname{Err}_{H^1(\omega)}$	$\operatorname{Err}_{L^2(\partial\omega)}$
1/128	16641/35	13	0.17	2.2550e-4	1.6884e-2	1.1689e-3
1/256	66049/62	25	1.33	5.4869e-5	7.7891e-3	2.9342e-4
1/512	263169/110	40	14.97	1.4177e-5	4.0160e-3	1.1504e-4
1/1024	1050625/198	55	83.56	3.4507e-6	1.9028e-3	2.4769e-5
1/2048	4198401/360	94	571.50	9.0638e-7	9.9895e-4	1.2495e-5
Convergence rates:				1.991	1.019	1.666

New FDM, PSCM+Multigrid

Step h	n/m	Iters.	C.time[s]	$\operatorname{Err}_{L^2(\omega)}$	$\operatorname{Err}_{H^1(\omega)}$	$\operatorname{Err}_{L^2(\partial\omega)}$
1/128	16641/34	11	0.22	2.4444e-4	1.8988e-2	1.4694e-3
1/256	66049/62	13	0.88	5.5030e-5	7.6303e-3	2.5171e-4
1/512	263169/110	19	8.41	1.3952e-5	3.8638e-3	8.3976e-5
1/1024	1050625/198	22	41.91	3.3209e-6	1.8681e-3	2.5253e-5
1/2048	4198401/360	31	243.50	8.5762e-7	9.6771e-4	1.1555e-5
Convergence rates:				2.036	1.062	1.730

● First ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Qui

New FDM: BiCGM	- iterations,	discretization	error
-----------------------	---------------	----------------	-------

	Classical FDM		New FDM		New FDM+Multigrid	
Step <i>h</i>	Iters.	$\operatorname{Err}_{H^1(\omega)}$	Iters.	$\operatorname{Err}_{H^1(\omega)}$	Iters.	$\operatorname{Err}_{H^1(\omega)}$
1/128	8	1.9647e+0	13	1.6884e-2	11	1.8988e-2
1/256	9	1.2884e+0	25	7.7891e-3	13	7.6303e-3
1/512	12	8.6517e-1	40	4.0160e-3	19	3.8638e-3
1/1024	18	6.0511e-1	55	1.9028e-3	22	1.8681e-3
1/2048	25	4.4015e-1	94	9.9895e-4	31	9.6771e-4
Conv. rates:		0.54		1.02		1.06

Figure 1: $H^1(\omega)$ -error sensitivity on δ .

Figure 2: $cond(P_1F|\mathbb{N}(G_2))$ sensitivity on δ .

Conclusions

- The efficient implementation of the FDM with an auxiliary boundary.
- The saddle-point system is solved by the PSCM (non-symmetric analogy of FETI).
- The fast Poisson-like solver for singular matrices are used.
- The fast implementation is "matrix free".

References

R. Glowinski, T. Pan, J. Periaux (1994): A fictitious domain method for Dirichlet problem and applications. Comput. Meth. Appl. Mech. Engrg. 111, 283–303.

Farhat, C., Mandel, J., Roux, F., X. (1994): *Optimal convergence properties of the FETI domain decomposition method*, Comput. Methods Appl. Mech. Engrg., 115, 365–385.

R. K. (2005): Complexity of an algorithm for solving saddle-point systems with singular blocks arising in wavelet-Galerkin discretizations, Appl. Math. 50, 291–308.

J. Haslinger, T. Kozubek, R.K., G. Peichel (2007): *Projected Schur complement method for solving non-symmetric systems arising from a smooth fictitious domain approach*, in preparing.