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Outline of the talk

• Motivation

• Some formulations of the problem

• Analytic properties of a mixed formulation

• Reproducing kernels and the biharmonic operator

• Positivity issues in the plate bending problems

• Some properties of the systems of linear algebraic equations

obtained via discretization
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[9] Hlaváček I. Plate bending problems with uncertain input data. Unpublished manuscript,

Srnı́, September 2005.

[10] Mayer P. Computational experiments with plates. Research papers ČVUT K101.05.01.
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1 Definitions and notation
Ω - region in R2

∂Ω - boundary of region Ω

Hm(Ω), 1 ≤ m ≤ 2 - solution space

‖v‖m,Ω =
(∑

|α|≤m

∫
Ω
|∂αv|2

)1/2

- norm in the space Hm(Ω)

Hm
0 (Ω) - zero-trace solution space

L1/2(∂Ω) - trace space
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M - complementary subspace of the Hilbert space H1(Ω) with respect to H1
0 (Ω)

thus satisfies relation H1(Ω) = H1
0 (Ω)⊕M

(., .)M - inner product onM inducing onM norm equivalent with the norm

heredited from H1(Ω)
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2 Biharmonic equation

∆2u = f in Ω and u = 0 =
∂u

∂ν
on ∂Ω

2.1 Formulation of the Problem
Find u ∈ H2

0 (Ω) such that relations

J(u) = min
{
J(v) : v ∈ H2

0 (Ω)
}

,(2.1)

hold where

J(v) =
1
2

∫

Ω

|∆v|2 −
∫

Ω

fv , v ∈ H2
0 (Ω).(2.2)

In place of (2.2) one can minimize functional

J (v, ψ) =
1
2

∫

Ω

|ψ|2 −
∫

Ω

fv(2.3)
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under the assumption that v ∈ H2
0 and ψ ∈ L2(Ω) and simultaneously

∆v = ψ.

The subspaces corresponding to the variational principle introduced are characterized as

follows:

V =
{
(v, ψ) ∈ H1

0 (Ω)× L2(Ω) : ∀µ ∈ H1
0 (Ω) satisfying β ((v, µ), µ) = 0

}
,

where

β ((v, ψ), µ) =
∫

Ω

gradv gradµ−
∫

Ω

ψµ(2.4)

A relationship between the natural variational principle (2.1)-(2.2) and that one given by

(2.3) reads:

2.2 Assume u is a solution of Problem 1. Then also

J (u,−∆u) = min {J (v, φ) : (v, φ) ∈ V} .
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This fact guarantees a possibility to factorize Problem 1 to a subsequent solving Poisson

problems, hence problems of order 2. It is easy to see that function φ ca be interpreted as an

aproximation or reprezentative of−∆u.
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3 An Algorithm

Input data : f ∈ L2(Ω), λ0 ∈M

1(0) Set subsequently k = 0, 1, ...

20 Find φk ∈ H1
0 (Ω) such that in the classical formulation

∆φk = f in Ω

φk = λk on

in the variational formulation
∫
Ω

gradφkgradµdΩ =
∫
Ω

fµdΩ ∀µ ∈ H1
0 (Ω)

φk − λk ∈ H1
0 (Ω)
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30 Find uk ∈ H1
0 (Ω) such that

in the classical formulation
∆uk = φk in Ω

uk = 0 on

in the variational formulation
∫
Ω

gradukgradµdΩ =
∫
Ω

φkµdΩ ∀µ ∈ H1
0 (Ω)

uk ∈ H1
0 (Ω)
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40Find λk+1 ∈M such that

in the classical formulation

λk+1 = λk + ρ
[
∆uk − φk

]
on ∂Ω

in the variational formulation
(
λk+1 − λk, µ

)
M = ρ

[∫
Ω

gradukgradµdΩ− ∫
Ω

φkµdΩ
]

∀µ ∈M
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Convergence of the Algorithm is characterized using the following relations.

3.1 Assuming parameter ρ is chosen in the interval (0, 2c2σ2), where

σ = inf

{
‖∆v‖L2(Ω)

‖ ∂v
∂ν ‖L2(Ω)

: v ∈ H2(Ω) ∩H1
0 (Ω)

}

and constant c > 0 satisfies relations

c‖µ‖L2(∂Ω) ≤ (µ, µ)1/2
M , ∀µ ∈ H1(Ω),

the quantities appearing in Algorithm 1 fulfil relations

lim
k→∞

‖uk − u‖1,Ω = 0,

a

lim
k→∞

‖φk + ∆u‖L2(Ω) = 0.
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4 Discrete formulation

Space of approximate solutions:

Vh ⊂ H1(Ω)

Space of approximate solutions with zero traces:

V0h = {vh ∈ Vh : vh = 0 na ∂Ω}
Space of approximate solutions with constraints:

Vh = {(vh, ψh) ∈ V0h × Vh;∀µh ∈ Vh, β((vh, ψh), µh) = 0}
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Space of approximate solutions with constraints and zero traces:

Wh = {(vh, ψh) ∈ V0h × Vh; ∀µh ∈ V0h, β((vh, ψh), µh) = 0}
Complementary space of V0h in Vh, thus,

Vh = V0h ⊕Mh
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4.1 Algorithm 1h

Input data:fh∈ Vh, λ0
h ∈M

Set subsequently k = 0, 1, ...
10 Find φk

h satisfying relations φk
h − λk

h ∈ V0h and

∀vh ∈ V0h,

∫

Ω

grad φk
h grad vh =

∫

Ω

fvh.

20 Find uk
h ∈ V0h such that by

∀vh ∈ V0h,

∫

Ω

grad uk
h grad vh =

∫

Ω

φk
hvh.

30 Find λk+1
h ∈Mh such that

∀µh ∈Mh,
(
λk+1

h − λk
h, µh

)
Mh

= ρ β
(
(uk

h, φk
h), µh

)
= 0.
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Let Ah : Vh → V0h be given by

Ahψh = vh ⇔ ∀µh ∈ V0h,

∫

Ω

grad vh gradµh =
∫

Ω

ψhµh

Similarly, Bh : Vh →Mh utilizing the system of equations: Bh

∀µh ∈Mh : (Bhψh, ψh)Mh
= β ((Ahψh, ψh), µh) = 0.

Hence, Bhψh is a restriction of Ahψh onto ∂Ω. (We have that Ah ∼ ∆−1 with boundary

conditions implied from Ahψh).

A result similar to that describing convergence for the continuous case is contained in the

following

4.2 Assuming paprameter ρ is chosen from the interval (0, 2σh
2), where

σh =
1
‖B‖ ,
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and ‖B‖ denotes the operator L2-norm, relations

lim
k→∞

∥∥uk
h − uh

∥∥
V0h

= 0, lim
k→∞

∥∥φk
h − φh

∥∥
Vh

= 0

hold.
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5 Finite element spaces

Triangulation Th of the region Ω consists of elements K such that Ω =
⋃

K∈Th
and each

element K satisfies for all triangulations 0 < h ≤ h0 standard geometric conditions in the

sense of [5]. It is assumed also that each element K is an affine picture of a reference element

K̂ : K = FK(K̂).

Space

Vh =
{
vh ∈ C(Ω) : ∀K ∈ Th, vh|K ∈ PK

}

is generated utilizing the triangulation Th where

PK =
{

v : K →R; v = v̂ ◦ F−1
K , ∀v̂ ∈ P̂

}

assuming P̂ a finite dimensional space of functions satisfying

P1 ⊂ P̂

where P1 denotes the set of all polynomials of order≤ 1 in two variables.
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5.1 As regular class of triangulations one understands a system {Th} satisfying with suitable

constants independent of h, α and τ such that

max
{

h(K)
δ(K)

}
≤ α,

τ max {h(K) : K ∈ Th} ≤ min {h(K) : K ∈ Th} , h = max {h(K) : K ∈ Th}

where h(K) = diameter K, δ(K) = sup{diameter of the discs inscribed into K}.

The above theory has been developed without any requirements concerning the spaces

Vh, V0h, Mh. To determining the value of parameter ρ we need some specifications con-

cerning these spaces however. As spaces Mh we choose in agreement with the choice of

the spaces Vh a V0h the following specific ones: SpacesMh are subspaces of Vh consisting

of functions whose values vanish at all inner nodes of Ω. We then have the following result.
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5.2 Theorem Assume that the inner product (., .)Mh
is the L2-inner product on ∂Ω. Fur-

ther, let Vh a V0h aMh be chosen such described above.

Then

lim
k→∞

σh = σ,

where σ is the quantity introduced in the part of this paper devoted to the continuous problem.
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6 Reproducing kernels and the biharmonic

operator

Consider in a plane domainD the classB of all regular harmonic functions (in general complex

valued) with a finite norm given by

‖h‖2 =
∫ ∫

D
|h(x, y)|2dxdy.

Class B possesses a reproducing kernel which will be denoted by H(z, z1), i.e.

f(z) =
∫ ∫

D
H(z, z1)f(z1)dz1, ∀f ∈ B, z = x + iy ∈ D.
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Assume u is a complex-valued function. Then û denotes its complex conjugate.

6.1 Theorem [1] In order that the reproducing kernel K(x, y) of the proper functional Hilbert

space E be nonnegative it is necessary and sufficient that E have two properties

(a) If u ∈ E , then û ∈ E and ‖û‖ = ‖u‖.

(b) For each real-valued u ∈ E there exists ũ ∈ E such that

ũ(x) ≥ |u(x)| for all x and ‖ũ‖ = ‖u‖.
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7 Positivity issues in plate bending problems

AssumeD ⊂ R2 is a region.

Denote by symbol A an operator defined by





Au ≡ ∆2u for (x, y) ∈ D

u(x, y) = 0 = ∂
∂ν u(x, y) for (x, y) ∈ ∂D

where

(∆u)(x, y) ≡
[(

∂
∂x

)2
+

(
∂
∂y

)2
]

u(x, y) for (x, y) ∈ D.

Question (Hadamard) Does the pointwise relation

Au(x, y) ≥ 0 for all (x, y) ∈ D
imply that

u(x, y) ≥ 0 for all (x, y) ∈ D?
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Answer Not always!

According to Duffin [7] the answer to the above question is no if D is suitably chosen

rectangle.

The answer to the Hadamard question is affirmative if

• D is a disc

Moreover, Duffin conjectures [7] that the answer to the Hadamard question is affirmative

ifD is a square.
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8 Concluding remarks

• The original problem of the fourth order is transferred to iterating on two Poisson equa-

tions in the domain Ω and finding solution to one functional equation on the boundary

∂Ω.

• The structure of the Poisson problems to solve is suitable for application of the most

efficient (multigrid) methods: Actually, the corresponding matrices are symmetric M -

matrices

• The operator governing the functional equation on the boundary ∂Ω reads

∆−1PM,H1
0 (Ω)∆

−1∆

where PM,H1
0 (Ω) denotes the projection of H1(Ω) onto M along H1

0 (Ω) and is

thus symmetrizable and positive semidefinite. A simple Richardson iteration recom-

mended in [5] to compute approximate boundary data for the auxiliary Poisson prob-
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lem can, if needed, be replaced by some efficient Krylov like method, e.g. conjugate

gradient method.

• An extra additional gain of the approach described is continuity of the quantity ∆u,

where u is the true solution of our biharmonic problem. This property of ∆u may not

be guaranteed even if one applies some conformal FEM.

• In order to use the methods described in the lecture to computing plate problems

standard software products utilizing C0 elements apply .
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