Computing plates

and

some related topics

Ivo Marek
Faculty of Civil Engineering, Czech University of Technology

PANM 13
In honor of Ivo Babuška's $80^{\text {th }}$ birthday
Prague, May 28-31, 2006

Acknowledgement

Petr Mayer and Milan Pultar

The work on which this talk is based was supported by the Program Information Society under Project 1ET400300415, Grant No. 201/02/0595 of the Grant Agency of the Czech Republic and Grant No. MSM 210000010 of the Ministry of Education, Youth and Sports of the Czech Republic.

Outline of the talk

- Motivation
- Some formulations of the problem
- Analytic properties of a mixed formulation
- Reproducing kernels and the biharmonic operator
- Positivity issues in the plate bending problems
- Some properties of the systems of linear algebraic equations obtained via discretization
[1] Aronszajn N. Theory of reproducing kernels. Trans. Amer. Math. Soc. 68 (1951), 337404.
[2] Aronszajn N., Smith K.T. Characterization of positive reproducing kernels. Applications to Green's functions. (1957), 611-622.
[3] Bittnar Z., Šejnoha J. Numerical Methods of Mechanics 1. Vydavatelství ČVUT, Praha 1992.
[4] Bittnar Z., Šejnoha J. Numerical Methods of Mechanics 2. Vydavatelství ČVUT, Praha 1992.
[5] Ciarlet P.G. The Finite Element Method for Elliptic Problems. SIAM, Philadelphia 2002.
[6] Ciarlet P.G., Glowinski R. Dual iterative techniques for solving a finite element approximation of the biharmonic equation. Computer methods in Applied Mechanics and Engineering 5 (1975) 277-295.
[7] Duffin R.J. On a question of Hadamard concerning superharmonic functions. Journal of Mathematics and Physics 1 (1949), 253-258.
[8] Hlaváček I. A mixed finite element method for plate bending with a unilateral obstacle. Appl. Math. 39, 25-44 (1994).
[9] Hlaváček I. Plate bending problems with uncertain input data. Unpublished manuscript, Srní, September 2005.
[10] Mayer P. Computational experiments with plates. Research papers ČVUT K101.05.01. Praha 2005.

1 Definitions and notation

$$
\begin{array}{ccl}
\Omega & - & \text { region in } \mathcal{R}^{2} \\
\partial \Omega & - & \text { boundary of region } \Omega \\
H^{m}(\Omega), 1 \leq m \leq 2 & - & \text { solution space } \\
\|v\|_{m, \Omega}=\left(\sum_{|\alpha| \leq m} \int_{\Omega}\left|\partial^{\alpha} v\right|^{2}\right)^{1 / 2} & - & \text { norm in the space } H^{m}(\Omega) \\
H_{0}^{m}(\Omega) & - & \text { zero-trace solution space } \\
L^{1 / 2}(\partial \Omega) & \text { - } & \text { trace space }
\end{array}
$$

$\mathcal{M} \quad$ - complementary subspace of the Hilbert space $H^{1}(\Omega)$ with respect to $H_{0}^{1}(\Omega)$ thus satisfies relation $H^{1}(\Omega)=H_{0}^{1}(\Omega) \oplus \mathcal{M}$
$(.,)_{\mathcal{M}} \quad$ - inner product on \mathcal{M} inducing on \mathcal{M} norm equivalent with the norm heredited from $H^{1}(\Omega)$

2 Biharmonic equation

$$
\Delta^{2} u=f \quad \text { in } \Omega \quad \text { and } \quad u=0=\frac{\partial u}{\partial \nu} \quad \text { on } \partial \Omega
$$

2.1 Formulation of the Problem

Find $u \in H_{0}^{2}(\Omega)$ such that relations

$$
\begin{equation*}
J(u)=\min \left\{J(v): v \in H_{0}^{2}(\Omega)\right\} \tag{2.1}
\end{equation*}
$$

hold where

$$
\begin{equation*}
J(v)=\frac{1}{2} \int_{\Omega}|\Delta v|^{2}-\int_{\Omega} f v, \quad v \in H_{0}^{2}(\Omega) . \tag{2.2}
\end{equation*}
$$

In place of (2.2) one can minimize functional

$$
\begin{equation*}
\mathcal{J}(v, \psi)=\frac{1}{2} \int_{\Omega}|\psi|^{2}-\int_{\Omega} f v \tag{2.3}
\end{equation*}
$$

under the assumption that $v \in H_{0}^{2}$ and $\psi \in L^{2}(\Omega)$ and simultaneously

$$
\Delta v=\psi
$$

The subspaces corresponding to the variational principle introduced are characterized as follows:

$$
\mathcal{V}=\left\{(v, \psi) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega): \forall \mu \in H_{0}^{1}(\Omega) \text { satisfying } \beta((v, \mu), \mu)=0\right\}
$$

where

$$
\begin{equation*}
\beta((v, \psi), \mu)=\int_{\Omega} \operatorname{gradv} \operatorname{grad} \mu-\int_{\Omega} \psi \mu \tag{2.4}
\end{equation*}
$$

A relationship between the natural variational principle (2.1)-(2.2) and that one given by (2.3) reads:
2.2 Assume u is a solution of Problem 1. Then also

$$
\mathcal{J}(u,-\Delta u)=\min \{\mathcal{J}(v, \phi):(v, \phi) \in \mathcal{V}\}
$$

This fact guarantees a possibility to factorize Problem 1 to a subsequent solving Poisson problems, hence problems of order 2 . It is easy to see that function ϕ ca be interpreted as an aproximation or reprezentative of $-\Delta u$.

3 An Algorithm

Input data: $f \in L^{2}(\Omega), \lambda^{0} \in \mathcal{M}$
$1^{(0)}$ Set subsequently $k=0,1, \ldots$
2^{0} Find $\phi^{k} \in H_{0}^{1}(\Omega)$ such that in the classical formulation

$$
\begin{aligned}
& \Delta \phi^{k}=f \text { in } \Omega \\
& \phi^{k}=\lambda^{k} \text { on }
\end{aligned}
$$

in the variational formulation

$$
\begin{gathered}
\int_{\Omega} \operatorname{grad} \phi^{k} \operatorname{grad} \mu d \Omega=\int_{\Omega} f \mu d \Omega \quad \forall \mu \in H_{0}^{1}(\Omega) \\
\phi^{k}-\lambda^{k} \in H_{0}^{1}(\Omega)
\end{gathered}
$$

3^{0} Find $u^{k} \in H_{0}^{1}(\Omega)$ such that
in the classical formulation

$$
\begin{gathered}
\Delta u^{k}=\phi^{k} \text { in } \Omega \\
u^{k}=0 \text { on }
\end{gathered}
$$

in the variational formulation

$$
\begin{gathered}
\int_{\Omega} \operatorname{grad} u^{k} \operatorname{grad} \mu d \Omega=\int_{\Omega} \phi^{k} \mu d \Omega \quad \forall \mu \in H_{0}^{1}(\Omega) \\
u^{k} \in H_{0}^{1}(\Omega)
\end{gathered}
$$

4^{0} Find $\lambda^{k+1} \in \mathcal{M}$ such that
in the classical formulation

$$
\lambda^{k+1}=\lambda^{k}+\rho\left[\Delta u^{k}-\phi^{k}\right] \text { on } \partial \Omega
$$

in the variational formulation

$$
\begin{gathered}
\left(\lambda^{k+1}-\lambda^{k}, \mu\right)_{\mathcal{M}}=\rho\left[\int_{\Omega} \operatorname{gradu}{ }^{k} \operatorname{grad} \mu d \Omega-\int_{\Omega} \phi^{k} \mu d \Omega\right] \\
\forall \mu \in \mathcal{M}
\end{gathered}
$$

Convergence of the Algorithm is characterized using the following relations.
3.1 Assuming parameter ρ is chosen in the interval $\left(0,2 c^{2} \sigma^{2}\right)$, where

$$
\sigma=\inf \left\{\frac{\|\Delta v\|_{L^{2}(\Omega)}}{\left\|\frac{\partial v}{\partial \nu}\right\|_{L^{2}(\Omega)}}: v \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right\}
$$

and constant $c>0$ satisfies relations

$$
c\|\mu\|_{L^{2}(\partial \Omega)} \leq(\mu, \mu)_{\mathcal{M}}^{1 / 2}, \forall \mu \in H^{1}(\Omega)
$$

the quantities appearing in Algorithm 1 fulfil relations

$$
\lim _{k \rightarrow \infty}\left\|u^{k}-u\right\|_{1, \Omega}=0
$$

a

$$
\lim _{k \rightarrow \infty}\left\|\phi^{k}+\Delta u\right\|_{L^{2}(\Omega)}=0
$$

4 Discrete formulation

Space of approximate solutions:

$$
V_{h} \subset H^{1}(\Omega)
$$

Space of approximate solutions with zero traces:

$$
V_{0 h}=\left\{v_{h} \in V_{h}: v_{h}=0 \quad \text { na } \quad \partial \Omega\right\}
$$

Space of approximate solutions with constraints:

$$
\mathcal{V}_{h}=\left\{\left(v_{h}, \psi_{h}\right) \in V_{0 h} \times V_{h} ; \forall \mu_{h} \in V_{h}, \quad \beta\left(\left(v_{h}, \psi_{h}\right), \mu_{h}\right)=0\right\}
$$

Space of approximate solutions with constraints and zero traces:

$$
\mathcal{W}_{h}=\left\{\left(v_{h}, \psi_{h}\right) \in V_{0 h} \times V_{h} ; \forall \mu_{h} \in V_{0 h}, \quad \beta\left(\left(v_{h}, \psi_{h}\right), \mu_{h}\right)=0\right\}
$$

Complementary space of $V_{0 h}$ in V_{h}, thus,

$$
V_{h}=V_{0 h} \oplus \mathcal{M}_{h}
$$

4.1 Algorithm 1_{h}

Input data: $f_{h} \in V_{h}, \lambda_{h}^{0} \in \mathcal{M}$
Set subsequently $k=0,1, \ldots$
1^{0} Find ϕ_{h}^{k} satisfying relations $\phi_{h}^{k}-\lambda_{h}^{k} \in V_{0 h}$ and

$$
\forall v_{h} \in V_{0 h}, \quad \int_{\Omega} \operatorname{grad} \phi_{h}^{k} \operatorname{grad} v_{h}=\int_{\Omega} f v_{h} .
$$

2^{0} Find $u_{h}^{k} \in V_{0 h}$ such that by

$$
\forall v_{h} \in V_{0 h}, \quad \int_{\Omega} \operatorname{grad} u_{h}^{k} \operatorname{grad} v_{h}=\int_{\Omega} \phi_{h}^{k} v_{h} .
$$

3^{0} Find $\lambda_{h}^{k+1} \in \mathcal{M}_{h}$ such that

$$
\forall \mu_{h} \in \mathcal{M}_{h}, \quad\left(\lambda_{h}^{k+1}-\lambda_{h}^{k}, \mu_{h}\right)_{\mathcal{M}_{h}}=\rho \beta\left(\left(u_{h}^{k}, \phi_{h}^{k}\right), \mu_{h}\right)=0
$$

Let $A_{h}: V_{h} \rightarrow V_{0 h}$ be given by

$$
A_{h} \psi_{h}=v_{h} \Leftrightarrow \forall \mu_{h} \in V_{0 h}, \int_{\Omega} \operatorname{grad} v_{h} \operatorname{grad} \mu_{h}=\int_{\Omega} \psi_{h} \mu_{h}
$$

Similarly, $B_{h}: V_{h} \rightarrow \mathcal{M}_{h}$ utilizing the system of equations: B_{h}

$$
\forall \mu_{h} \in \mathcal{M}_{h}:\left(B_{h} \psi_{h}, \psi_{h}\right)_{\mathcal{M}_{h}}=\beta\left(\left(A_{h} \psi_{h}, \psi_{h}\right), \mu_{h}\right)=0 .
$$

Hence, $B_{h} \psi_{h}$ is a restriction of $A_{h} \psi_{h}$ onto $\partial \Omega$. (We have that $A_{h} \sim \Delta^{-1}$ with boundary conditions implied from $A_{h} \psi_{h}$).

A result similar to that describing convergence for the continuous case is contained in the following
4.2 Assuming paprameter ρ is chosen from the interval $\left(0,2 \sigma_{h}{ }^{2}\right)$, where

$$
\sigma_{h}=\frac{1}{\|B\|}
$$

and $\|B\|$ denotes the operator L^{2}-norm, relations

$$
\lim _{k \rightarrow \infty}\left\|u_{h}^{k}-u_{h}\right\|_{V_{0 h}}=0, \quad \lim _{k \rightarrow \infty}\left\|\phi_{h}^{k}-\phi_{h}\right\|_{V_{h}}=0
$$

hold.

5 Finite element spaces

Triangulation \mathcal{T}_{h} of the region Ω consists of elements K such that $\bar{\Omega}=\bigcup_{K \in \mathcal{T}_{h}}$ and each element K satisfies for all triangulations $0<h \leq h_{0}$ standard geometric conditions in the sense of [5]. It is assumed also that each element K is an affine picture of a reference element $\hat{K}: K=F_{K}(\hat{K})$.

Space

$$
V_{h}=\left\{v_{h} \in \mathcal{C}(\bar{\Omega}): \forall K \in \mathcal{T}_{h},\left.v_{h}\right|_{K} \in P_{K}\right\}
$$

is generated utilizing the triangulation \mathcal{T}_{h} where

$$
P_{K}=\left\{v: K \rightarrow \mathcal{R} ; v=\hat{v} \circ F_{K}^{-1}, \forall \hat{v} \in \hat{P}\right\}
$$

assuming \hat{P} a finite dimensional space of functions satisfying

$$
P_{1} \subset \hat{P}
$$

where P_{1} denotes the set of all polynomials of order ≤ 1 in two variables.
5.1 As regular class of triangulations one understands a system $\left\{\mathcal{T}_{h}\right\}$ satisfying with suitable constants independent of h, α and τ such that

$$
\max \left\{\frac{h(K)}{\delta(K)}\right\} \leq \alpha
$$

$\tau \max \left\{h(K): K \in \mathcal{T}_{h}\right\} \leq \min \left\{h(K): K \in \mathcal{T}_{h}\right\}, \quad h=\max \left\{h(K): K \in \mathcal{T}_{h}\right\}$ where $h(K)=$ diameter $K, \delta(K)=\sup \{$ diameter of the discs inscribed into $K\}$.

The above theory has been developed without any requirements concerning the spaces $V_{h}, V_{0 h}, \mathcal{M}_{h}$. To determining the value of parameter ρ we need some specifications concerning these spaces however. As spaces \mathcal{M}_{h} we choose in agreement with the choice of the spaces V_{h} a $V_{0 h}$ the following specific ones: Spaces \mathcal{M}_{h} are subspaces of V_{h} consisting of functions whose values vanish at all inner nodes of Ω. We then have the following result.
5.2 Theorem Assume that the inner product (., . $)_{\mathcal{M}_{h}}$ is the L^{2}-inner product on $\partial \Omega$. Further, let V_{h} a $V_{0 h}$ a \mathcal{M}_{h} be chosen such described above.

Then

$$
\lim _{k \rightarrow \infty} \sigma_{h}=\sigma
$$

where σ is the quantity introduced in the part of this paper devoted to the continuous problem.

6 Reproducing kernels and the biharmonic operator

Consider in a plane domain \mathcal{D} the class \mathcal{B} of all regular harmonic functions (in general complex valued) with a finite norm given by

$$
\|h\|^{2}=\iint_{\mathcal{D}}|h(x, y)|^{2} d x d y
$$

Class \mathcal{B} possesses a reproducing kernel which will be denoted by $H\left(z, z_{1}\right)$, i.e.

$$
f(z)=\iint_{\mathcal{D}} H\left(z, z_{1}\right) f\left(z_{1}\right) d z_{1}, \forall f \in \mathcal{B}, z=x+i y \in \mathcal{D}
$$

Assume u is a complex-valued function. Then \hat{u} denotes its complex conjugate.
6.1 Theorem [1] In order that the reproducing kernel $K(x, y)$ of the proper functional Hilbert space \mathcal{E} be nonnegative it is necessary and sufficient that \mathcal{E} have two properties
(a) If $u \in \mathcal{E}$, then $\hat{u} \in \mathcal{E}$ and $\|\hat{u}\|=\|u\|$.
(b) For each real-valued $u \in \mathcal{E}$ there exists $\tilde{u} \in \mathcal{E}$ such that

$$
\tilde{u}(x) \geq|u(x)| \text { for all } x \text { and }\|\tilde{u}\|=\|u\|
$$

7 Positivity issues in plate bending problems

Assume $\mathcal{D} \subset \mathcal{R}^{2}$ is a region.
Denote by symbol A an operator defined by

$$
\left\{\begin{array}{cl}
A u \equiv \Delta^{2} u & \text { for }(x, y) \in \mathcal{D} \\
u(x, y)=0=\frac{\partial}{\partial \nu} u(x, y) & \text { for }(x, y) \in \partial \mathcal{D}
\end{array}\right.
$$

where

$$
(\Delta u)(x, y) \equiv\left[\left(\frac{\partial}{\partial x}\right)^{2}+\left(\frac{\partial}{\partial y}\right)^{2}\right] u(x, y) \quad \text { for }(x, y) \in \mathcal{D}
$$

Question (Hadamard) Does the pointwise relation

$$
A u(x, y) \geq 0 \quad \text { for all }(x, y) \in \mathcal{D}
$$

imply that

$$
u(x, y) \geq 0 \quad \text { for all }(x, y) \in \mathcal{D} ?
$$

Answer Not always!

According to Duffin [7] the answer to the above question is no if \mathcal{D} is suitably chosen rectangle.

The answer to the Hadamard question is affirmative if

- \mathcal{D} is a disc

Moreover, Duffin conjectures [7] that the answer to the Hadamard question is affirmative if \mathcal{D} is a square.

8 Concluding remarks

- The original problem of the fourth order is transferred to iterating on two Poisson equations in the domain Ω and finding solution to one functional equation on the boundary $\partial \Omega$.
- The structure of the Poisson problems to solve is suitable for application of the most efficient (multigrid) methods: Actually, the corresponding matrices are symmetric M matrices
- The operator governing the functional equation on the boundary $\partial \Omega$ reads

$$
\Delta^{-1} P_{\mathcal{M}, H_{0}^{1}(\Omega)} \Delta^{-1} \Delta
$$

where $P_{\mathcal{M}, H_{0}^{1}(\Omega)}$ denotes the projection of $H^{1}(\Omega)$ onto \mathcal{M} along $H_{0}^{1}(\Omega)$ and is thus symmetrizable and positive semidefinite. A simple Richardson iteration recommended in [5] to compute approximate boundary data for the auxiliary Poisson prob-
lem can, if needed, be replaced by some efficient Krylov like method, e.g. conjugate gradient method.

- An extra additional gain of the approach described is continuity of the quantity Δu, where u is the true solution of our biharmonic problem. This property of Δu may not be guaranteed even if one applies some conformal FEM.
- In order to use the methods described in the lecture to computing plate problems standard software products utilizing \mathcal{C}^{0} elements apply .

