
Total least squares problem in

linear algebraic systems

with multiple right-hand side

< work in progress >
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I. Single right-hand side

Consider an orthogonally invariant linear approximation problem

A x ≈ b , or, equivalently,
[

b A
] [

−1
x

]
≈ 0 ,

where A ∈ R
m×n , b ∈ R

m , assume AT b �= 0 and m > n .

The total least square (TLS) problem for given A , b :

min
e , G , x

∥∥∥ [
e G

] ∥∥∥
F

subject to (A + G ) x = b + e .
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The solution of TLS problem may not exist!

Consider the system [
1 0
0 0

] [
ξ1
ξ2

]
=

[
1
1

]
,

then with [
e G

]
=

[
0 0 0
0 0 ε

]
, ε �= 0

the system is compatible[
1 0
0 ε

] [
ξ1
ξ2

]
=

[
1
1

]
.

Obviously ‖ [ e |G ] ‖F = ε , thus there is no minimal correction!
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I.1 Classical analysis

Consider the singular value decomposition (SVD), [ b |A ] = U ΣV T ,
where σj , uj , vj , denote the j th singular value, left and right singular
vector, respectively, j = 1 , . . . , n + 1 . Assuming γ �= 0 ,[

−1
xTLS

]
= − γ−1 vn+1 = − γ−1

[
γ
w

]
,

[
e G

]
= −un+1 σn+1 vT

n+1 .

Existence? Sufficient condition:

σ′
n (A) > σn+1 =⇒ γ �= 0 .

[Golub, Van Loan, 1980]
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If γ = 0 , then the solution can not be computed from vn+1 .

Compute xTLS from the vector vp ≡ maxj { vj : eT
1 vj �= 0 } ,[

−1
xTLS

]
= − ( eT

1 vp )−1 vp ,
[

e G
]

= −up σp vT
p .

This solves for any A , b , the modified constrained problem

min
e , G , x

∥∥∥ [
e G

] ∥∥∥
F

subject to (A + G ) x = b + e ,[
e G

] [
vp+1 , . . . , vn+1

]
= 0 .

[Van Huffel, Vandewalle, 1991]: nongeneric solution.
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Uniqueness

If σn+1 respectively σp is not simple, then the solution is nonunique,
see [Golub, Van Loan, 1980] and [Van Huffel, Vandewalle, 1991].

Relationship between the basic and nongeneric solution

The Van Huffel, Vandewalle idea of nongeneric solution is a consis-
tent extension of Golub, Van Loan basic solution.

Consequently: A (possibly nongeneric) solution for any A, b , but
two different concepts.
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I.2 Data reduction in A x ≈ b

For a given A , b , there are orthogonal matrices P , Q such that

PT
[

b A
] [

1 0
0 Q

]
= PT

[
b A Q

]
=

[
b1 A11 0
0 0 A22

]
.

The original problem is decomposed into independent subproblems

A11 x1 ≈ b1 and A22 x2 ≈ 0 .

The second subproblem may be nonexistent.

Consider x2 = 0 ; the first subproblem contains all sufficient informa-
tion for solving the original problem, x = Q [ xT

1 |0 ]T .

[Paige, Strakoš, 2006]
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Data reduction based on the SVD of A

Using SVD of A , a suitable choice of a bases of singular vector sub-
spaces gives (after permutation) the decomposition satisfying:

(P1) A11 has full column rank,

(P2) [ b1 |A11 ] has full row rank,

(P3) b1 has nonzero projections onto all left singular vector

subspaces of A11 ,

(P4) singular values of A11 are simple and nonzero.

Consequently, the subproblem given by SVD is also minimal; it con-
tains all necessary and sufficient information for solving the original
problem.

[Paige, Strakoš, 2006]
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Data reduction based on the Golub-Kahan bidiagonalization

The partial Golub-Kahan iterative bidiagonalization (GK) of A starting

from the vector b/‖b‖2 gives a subproblem Ã11 x̃1 ≈ b̃1 satisfying the

properties (P1) and (P2).

The relationship of the GK of A with the Lanczos tridiagonalization

of A AT and AT A , and the properties of Jacobi matrices gives (P3),

(P4), and, moreover

(P5) singular values of [ b̃1 | Ã11 ] are simple.

[Paige, Strakoš, 2006], [Hnětynková, Strakoš, 2006]
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Relationship between these two subproblems

Both subproblems have the properties (P1) – (P4), and thus they are

minimal (have minimal dimensions),

both represent the core subproblem,

however in different coordinates.

Fundamental data decomposition

• The core subproblem contains all necessary and sufficient

information for solving the original problem.

• All irrelevant and redundant information is removed

into the matrix A22 .
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Properties of core problem

From the properties of Jacobi matrices it follows that the core problem

always satisfies the Golub-Kahan condition for the existence of the

solution of the TLS problem.

Consequently:

• the core problem always has the basic solution,

• the solution of the core problem is always unique,

• the solution of the core problem, transformed to the original

coordinates is the (nongeneric) solution of the original problem.

[Paige, Strakoš, 2006]
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II. Multiple right-hand sides

Consider an orthogonally invariant linear approximation problem

A X ≈ B , or, equivalently,
[

B A
] [

−Id
X

]
≈ 0 ,

where A ∈ Rm×n , B ∈ Rm×d , assume AT B �= 0 , m ≥ n + d , and

B has full column rank.

The total least square (TLS) problem for given A , B :

min
E , G , X

∥∥∥ [
E G

] ∥∥∥
F

subject to (A + G )X = B + E .
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II.1 Extension of the classical analysis

Consider the SVD, [B |A ] = U ΣV T , where σj , uj , vj , denote the

j th singular value, left and right singular vector, respectively, j =

1 , . . . , n + d . Assuming det (Γ) �= 0 ,[
−Id

XTLS

]
= −Γ−1

[
vn+1 , . . . , vn+d

]
= −Γ−1

[
Γ
W

]
,

[
E G

]
= −∑d

j=1
ui σi vT

i .

(A concept of a nongeneric solution has also been developed.)

[Van Huffel, Vandewalle, 1991]
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Troubles with multiple singular values

[Van Huffel, Vandewalle, 1991] analyze special cases (for special

distributions of singular values of [B |A ] ).

In full generality, the situation with multiple right-hand sides has not

been fully analyzed yet:

• there is no known general a-priori condition for existence

of the solution,

• a meaning of a nongeneric solution is not so clear.
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II.2 Data reduction in A X ≈ B

The challenge is: For a given A , B , find orthogonal matrices P , Q ,
R , such that

PT
[

B A
] [

R 0
0 Q

]
= PT

[
B R A Q

]
=

[
B1 A11 0
0 0 A22

]
.

The original problem is decomposed into independent subproblems

A11 X1 ≈ B1 , and A22 X2 ≈ 0 .

The transformation into the described form always exists (A22 may
be nonexistent).

Consider X2 = 0 ; the first subproblem contains all sufficient infor-
mation for solving the original problem.
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Data reduction based on the SVD of A

Using SVD of A , a suitable choice of a bases of singular vector sub-

spaces gives (after permutation) the decomposition satisfying:

(P1) A11 and B1 have full column rank,

(P2) [B1 |A11 ] has full row rank,

(P3) projections (UT
j B1 ) of B1 onto all left singular vector

subspaces Uj of A11 have full row rank,

(P4) singular values of A11 are nonzero with multiplicities

at most d .

Question: Is the constructed subproblem minimal? Or, equivalently,

does this problem contain only necessary information?
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Data reduction based on the band generalization of the GK

The band generalization of the GK bidiagonalization of A gives a

subproblem Ã11 X̃1 ≈ B̃1 satisfying the properties (P1) and (P2).

Using the properties of the band matrix Ã11 ÃT
11 , (P4), and, moreover

(P5) singular values of [ B̃1 | Ã11 ] have multiplicities at most d ,

can be proved.

The property (P3), that projections (UT
j B1 ) of B1 onto all left sin-

gular vector subspaces of A11 have full row rank, is not proved yet.
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Relationship between these two subproblems

Relationship between the SVD based decomposition and the result of

the banded GK generalization is not clear yet.

Definition of the core problem?
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III. Future work and open questions

(Q1) Proof of the property (P3) of [ B̃1 | Ã11 ] .

(Q2) Proof of the minimality; definition of the core problem.

(Q3) Relationship of the SVD based decomposition and

the banded GK generalization approach.

(Q4) Conditions for existence of the solution.

(Q5) Properties of the core problem.

...
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[04] Hnětynková, Plešinger, Strakoš – Lanczos tridiagonalization, Golub-Kahan
bidiagonalization and core problem, PAMM, 2006.

[05] Hnětynková, Strakoš – Lanczos tridiagonalization and core problems, Lin-
ear Alg. Appl., 2007.
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