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1. Core problem theory

For a given orthogonally invariant linear approximation problem

A x ≈ b , A ∈ R
n×m , b ∈ R

n ,

there exist orthogonal matrices P , Q such that

PT
[

b A
]

[

1

Q

]

=

[

b1 A11

A22

]

.

The original problem is split into two independent subproblems.

2



The first subproblem A11 x1 ≈ b1 has minimal dimensions and con-

tains all necessary and sufficient information for solving the original

problem. This subproblem is called core problem within the original

approximation problem.

[Pl., St., DD2005], [Paige, St., 2006].

Many different transformations give the minimally dimensioned sub-

problem,

e. g., the upper bidiagonalization of the extended matrix [ b |A ] .

[Paige, St., 2006], different proof in [Hnětynková, St., 2006],

[Hnětynková, Pl., St., 2006].
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The core problem theory:

It completes the total least squares theory initiated by the paper

[Golub, Van Loan, 1980].

It explains and clarifies the nongeneric solution concept (in single

right-hand side case) established in the book

[Van Huffel, Vandewalle, 1991].

Application of the core problem theory:

Application in close-to-nongeneric problems, ill-posed and rank defi-

cient problems.

Generalization of the core problem theory:

Extension of the core problem theory on the multiple right-hand side

problems – instead of the n vector b, the n by d matrix B is considered.
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2. Stopping criteria in ill-posed problems

Let b represent exact data polluted by an unknown noise,

b = bexact + bnoise , ‖bexact‖2 � ‖bnoise‖2 .

In ill-posed problems singular values of A gradually decay to zero

without noticeable gap.

Using, e. g., upper bidiagonalization of [ b |A ] and some stopping

criteria only an approximation Ã11 x̃1 ≈ b̃1 of the exact core prob-

lem may be obtained. If the approximation contains noise, then this

noise magnified by small singular values of Ã11 during the (pseudo)-

inversion of Ã11 may cover all meaningful information in the solution,

‖x̃1,exact‖2 ≤ ‖Ã
†
11 b̃1,noise‖2 .
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Singular values of A gradually decay to zero.
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The core problem computation is usually based on the Golub-Kahan

bidiagonalization algorithm (GK) applied on A and started from

s1 = b/‖b‖2 , or equivalently, by the upper bidiagonalization of [ b |A ] .

GK produces two sets of vectors { sj } and {wj } and the bidiagonal

matrix Lj of growing dimensions. The core problem is obtained by

the first zero bidiagonal element in Lj (in exact arithmetic).

The question is: How to define the stopping criteria for GK if

the ill-posed problem with noisy right-hand side is considered?

(Rounding errors may have similar effect as a noise contamination,

when the finite precision arithmetic is used.)
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GK starts with the normalized noisy right-hand side s1 = b / ‖b‖2 ,

thus vectors sj has to contain some information about the noise.

Our idea is: An information about the noise level can be

revealed from the vectors sj generated by GK.

Technique: The noise level may be found using the Fourier

analysis of the vectors sj generated by GK.

We choose two different Fourier basis. The first is the basis of the

left singular vectors ûj of A . It is the most natural basis useful for

the theoretical analysis but is not applicable in practical computations.

The second is the trigonometrical basis. It is well applicable in

practical computations – the fast Fourier transform algorithm (FFT).
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An example:

Consider the problem SHAW(400) from [Hansen, RTools] with a noisy

right-hand side (the noise was artificially added)

46.6225 = ‖ b exact ‖2 � ‖ bnoise ‖2 = 10−12 .

We study the noise-contaminated vectors sj in the noise-free basis

of the left singular vectors Û = [û1, . . . , ûn] , and in the frequency

domain,

( ÛT sj ) , and F [ sj ] , j = 1, 2, . . . ,

where F denotes the FFT operator.
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The vector s1 is dominated by

low frequencies, thus it has

dominant projection in the direc-

tion of the left singular vector û1

and possibly several next vectors.

Analogously s2, s3, ... .
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For some index j = k the low frequencies information is projected

out from sk by orthogonalization against the previous vectors sj ,

j = 1 , 2 , 3 , . . . , k − 1 , and the noise is revealed.
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Vector s18 is fully dominated by noise –

the noise level is revealed.

Now we get explicit information when the noise begins to cover useful

information in the data. The solution of the original problem A x = b
computed through the core problem approximation with

Ã11 = Lj ,

for j > k = 18 can be significantly polluted by the noise.

(In the 19th step, the noise is partially projected out because

vectors sj has to be mutually orthonormal.)

This work was presented on GAMM-SIAM Conference, July 2006,

Düsseldorf. Similar idea is used in [Hansen, Kilmer, Kjeldsen, 2006].
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3. Multiple right-hand side

Consider orthogonally invariant linear approximation problem

A X ≈ B , A ∈ R
n×m , B ∈ R

n×d .

We are looking for orthogonal matrices P , Q , R such that

PT
[

B A
]

[

R
Q

]

=

[

B1 A11

A22

]

,

and A11 X1 ≈ B1 has minimal dimensions and contains all neces-

sary and sufficient information for solving the original problem.

The original problem is split into two independent subproblems and

the first subproblem
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The situation is much more complicated than in the single right-hand

side case, e. g., the TLS solution for general data [B |A ] is still

not well defined, see [Van Huffel, Vandewalle, 1991].

The intuitive approach is presented in [Björck, 2005], [Björck, 2006].

First fragments of analysis of this problem are in

[Sima, Van Huffel, 2006], [Sima, PhD2006].

Our analysis based on SVDs of B and A was presented on 4th Inter-

national Workshop on TLS and EIV Modeling, August 2006, Leuven.
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4. Summary and future work

Summary:

• Stopping criteria in solving ill-posed problems (presented on in-

ternational conference, work still in progress).

• Generalization of core theory in the multiple right-hand side case

(presented on int. workshop, work still in progress).

• Stable and fast implementation of two bidiagonalization algo-

rithms (presented in proceedings of DD ÚI AV ČR 2006).
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Future work:

• Application of our ideas in solving ill-posed problems arising from

image deblurring.

• Definition of the core problem in the multiple right-hand side case

(eventually definition of solution for general data [B |A ]).

• Implementation of stable solver for ill-posed problems based on

the core problem theory and our stopping criterion.
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