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1. Core problem theory

For a given orthogonally invariant linear approximation problem
Az ~ b, AecR"™™M  pecR",

there exist orthogonal matrices P, Q such that

PT [5]A] [% _ [blAH ]

A
The original problem is split into two independent subproblems.




The first subproblem A11x1 = b; has minimal dimensions and con-
tains all necessary and sufficient information for solving the original
problem. This subproblem is called core problem within the original
approximation problem.

[Pl., St., DD2005], [Paige, St., 2006].

Many different transformations give the minimally dimensioned sub-
problem,

e. 9., the upper bidiagonalization of the extended matrix [b| A].

[Paige, St., 2006], different proof in [Hn&tynkova, St., 2006],
[Hné&tynkova, PI., St., 2006].



The core problem theory:

It completes the total least squares theory initiated by the paper
[Golub, Van Loan, 1980].

It explains and clarifies the nongeneric solution concept (in single
right-hand side case) established in the book

[Van Huffel, Vandewalle, 1991].

Application of the core problem theory:

Application in close-to-nongeneric problems, ill-posed and rank defi-
cient problems.

Generalization of the core problem theory:

Extension of the core problem theory on the multiple right-hand side
problems — instead of the n vector b, the n by d matrix B is considered.

4



2. Stopping criteria in ill-posed problems

Let b represent exact data polluted by an unknown noise,

b = bexact T bnoise ; [bexactll2 > |bnoisell2 -

In ill-posed problems singular values of A gradually decay to zero
without noticeable gap.

Using, e. g., upper bidiagonalization of [b|A] and some stopping
criteria only an approximation A11%; ~ by of the exact core prob-
lem may be obtained. If the approximation contains noise, then this
noise magnified by small singular values of A;1 during the (pseudo)-
inversion of A1 may cover all meaningful information in the solution,

||571,exact||2 < IIAJL El,noiseHQ .



Singular values of A gradually decay to zero.
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The core problem computation is usually based on the Golub-Kahan
bidiagonalization algorithm (GK) applied on A and started from
s1 = b/||b||2, or equivalently, by the upper bidiagonalization of [b| A].

GK produces two sets of vectors {s;} and {w;} and the bidiagonal
matrix L; of growing dimensions. The core problem is obtained by
the first zero bidiagonal element in L; (in exact arithmetic).

The question is: How to define the stopping criteria for GK if
the ill-posed problem with noisy right-hand side is considered?

(Rounding errors may have similar effect as a noise contamination,
when the finite precision arithmetic is used.)



GK starts with the normalized noisy right-hand side s; = b/||b]|2,
thus vectors S has to contain some information about the noise.

Our idea is: An information about the noise level can be
revealed from the vectors S generated by GK.

Technique: The noise level may be found using the Fourier
analysis of the vectors s; generated by GK.

We choose two different Fourier basis. The first is the basis of the
left singular vectors u; of A. It is the most natural basis useful for
the theoretical analysis but is not applicable in practical computations.

The second is the trigonometrical basis. It is well applicable in
practical computations — the fast Fourier transform algorithm (FFT).
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An example:

Consider the problem SHAW(400) from [Hansen, RTools] with a noisy
right-hand side (the noise was artificially added)

46.6225 = || b exact ||2 > || b noise ||2 — 10_12-

We study the noise-contaminated vectors S in the noise-free basis

of the left singular vectors U = [u4q,...,4n], and in the frequency
domain,

(0's;), and F[s;], i=1,2 ...,

where % denotes the FFT operator.



The vector s1 is dominated by
low frequencies, thus it has
dominant projection in the direc-
tion of the left singular vector uq
and possibly several next vectors.
Analogously so, s3, ....
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For some index 5 = k the low frequencies information is projected
out from s; by orthogonalization against the previous vectors Sj

g =1,2,3,...,k—1, and the noise is revealed.
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Vector s1g is fully dominated by noise —

the noise level iIs revealed.

Now we get explicit information when the noise begins to cover useful
information in the data. The solution of the original problem Ax = b
computed through the core problem approximation with

A1 = Ly,
for y > k£ = 18 can be significantly polluted by the noise.

(In the 19th step, the noise is partially projected out because
vectors s; has to be mutually orthonormal.)

This work was presented on GAMM-SIAM Conference, July 2006,
Diusseldorf. Similar idea is used in [Hansen, Kilmer, Kjeldsen, 2006].
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3. Multiple right-hand side

Consider orthogonally invariant linear approximation problem

AX ~ B, AcRY™m B ecRW
We are looking for orthogonal matrices P, , R such that

o] - 24t ]

| A

and A1 X1 = Bji has minimal dimensions and contains all neces-
sary and sufficient information for solving the original problem.

Pl B|A]

The original problem is split into two independent subproblems and
the first subproblem
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T he situation is much more complicated than in the single right-hand
side case, e. g., the TLS solution for general data [B|A] is still
not well defined, see [Van Huffel, Vandewalle, 1991].

The intuitive approach is presented in [Bjorck, 2005], [Bjorck, 2006].

First fragments of analysis of this problem are in
[Sima, Van Huffel, 2006], [Sima, PhD2006].

Our analysis based on SVDs of B and A was presented on 4th Inter-
national Workshop on TLS and EIV Modeling, August 2006, Leuven.
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4. Summary and future work

Summary.

e Stopping criteria in solving ill-posed problems (presented on in-
ternational conference, work still in progress).

e Generalization of core theory in the multiple right-hand side case
(presented on int. workshop, work still in progress).

e Stable and fast implementation of two bidiagonalization algo-
rithms (presented in proceedings of DD UI AV CR 2006).
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Future work:

e Application of our ideas in solving ill-posed problems arising from
image deblurring.

e Definition of the core problem in the multiple right-hand side case
(eventually definition of solution for general data [B|A]).

e Implementation of stable solver for ill-posed problems based on
the core problem theory and our stopping criterion.
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