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Abstract

A new a posteriori energy based error estimates were derived. They approx-

imate known estimates but they are more suitable for the two- or multi-level

iterative computing algorithms dealing with hierarchical finite element meth-

ods. The constants needed for the estimates are computed for the case of p-
hierarchical space of piecewise bilinear and biquadratic basis functions. Several

examples are introduced.

1. A posteriori estimates for elliptic problems and hierarchical bases

We present a basic comparison of the a posteriori error estimates for elliptic problems when
considering two different types of hierarchical refinements. We deal with a h-hierarchical piece-
wise bilinear basis and with a p-hierarchical basis of piecewise quadretic functions on rectangles.
The operator is a generalized laplacian with homogenous boundary conditions. Moreover, we
introduce a new type of the estimate which exploits the quantities computed within two-level
iterative algorithms.

It is to find û in some Hilbert space H , such that

a(û, v) = f(v) (1)

for all v ∈ H .

Bilinear form a(., .) is elliptic and positive definite in H , f(.) is a linear functional in H . Let
the energy norm be

|||v||| =
√

a(v, v).

Let Uh be a finite-dimensional subspace in H and let Uh be generated by a set of finite element
basis functions characterized by h. Let us choose some larger space Vh, Uh ⊂ Vh ⊂ H .

The approximate solution vh is defined by

a(vh, v) = f(v), (2)

v ∈ Vh.

Let the saturation assumption

|||û − vh||| ≤ β|||û − uh|||

be valid. We assume a hierarchical decomposition of Vh

Vh = Uh ⊕ Wh
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and the strengthened Cauchy - Bunyakowski - Schwarz (CBS) inequality

|a(u, w)| ≤ γ|||u||| |||w|||

for all u ∈ Uh, w ∈ Wh, where γ is less than one and independent on h.

The energy norm of the error û−uh in Wh can be esimated by the energy norm of eh such that

a(eh, w) = f(w) − a(uh, w)

for all w ∈ Wh.

Theorem 1. [2] We have

|||eh|||2 ≤ |||û − uh|||2 ≤
1

(1 − β2)(1 − γ2)
|||eh|||2.

The solution of (2) vh ∈ Vh can be decomposed uniquely into

vh = ūh + w̄h,

where ūh ∈ Uh and w̄h ∈ Wh. The preconditioning matrix for the iterative two-level method
may be as follows

( Aw 0
Auw S

)( I A−1

w Awu

0 I

)

,

where

A =
( Aw Awu

Auw Au

)

is a stiffness matrix of (2) decoupled accordingly to the splitting of Vh into Wh and Uh and S
is an approximation of Au − AuwA−1

w Awu.

Our aim is to find the relations among the energy norms of eh, û−uh, and some other expressions
which may arise (or at least their approximate values) during the multilevel iterative solution
processes. We get the following theorem.

Theorem 2. Under the introduced assumptions, we get

(1 − γ2)|||wh||| ≤ |||eh|||,

|||wh||| − γ|||uh − ūh||| ≤ |||eh|||,
and

|||eh||| ≤ |||wh||| + γ|||uh − ūh|||.

As a probably more interesting and useful topic, the local a posteriori error estimates can be
studied, e.g. [5].
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Figure 1: Four basis functions of Uh on a macroelement.

2. Comparison of the estimates for h− and p−hierarchical bases
for linear and bilinear finite element functions

We consider two different hierarchical finite element function spaces

V l
h = Uh ⊕ W l

h and V q
h = Uh ⊕ W q

h .

The space Uh consists of piecewise bilinear functions with rectangular supports, see Figure 1.
The space W l

h includes complementary bilinear functions with smaller supports (of the size of
a quarter of the coarse ones, W l

h ⊂ Uh

2

), while the space W q
h involves piecewise polynomial

functions of the second order [1], see Figure 2. The numbers of the degrees of freedom for finite
elements corresponding to V l

h and to V q
h are equal.

The saturation constants βl and βq can be substituted by the quantities 1

4
and h for spaces V l

h

and to V q
h , respectively. The CBS constants γl and γq are

γl =

√
3

2
and γq =

5

6
,

respectively, when a(., .) is a generalized laplacian and its coefficients are positive and piecewise
constant on the coarse elements. When the operator a(., .) and the functions correspond to the
izotropic problem, the constants are

γl =
1

2
and γq =

5

11
.

Remark. As we can see from [4], we have

γl =

√
3

2
γq
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Figure 2: Five basis functions wl
1
, . . . , wl

5
of W l

h and five basis functions wq
1, . . . , w

q
5 of W q

h , the

h and p refinements of Uh on a macroelement.
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for the uniform estimates of the CBS constants for linear finite element functions with trian-
gular supports and their refinements with either h-hierarchical functions (γl) or p-hierarchical
(quadratic) functions (γq). Using the results of [3], this trivially yields γq = 1 for this type of
elements.

As introduced in this part, different relations are obtained in the case of rectangular supported
finite element functions. The relations between γl and γq are

γl =
3
√

3

9
γq and γl =

5
√

3

9
γq

for the anisotropic problems and isotropic problems, respectively.

3. Examples

According to Theorems 1 and 2, we observe the following five quantities

q1 = |||wh||| − γ|||uh − ūh|||, q2 = |||eh|||, q3 = |||û− uh|||,

q4 =
|||eh|||

√

(1 − β2)(1 − γ2)
, q5 =

|||wh||| + γ|||uh − ūh|||
√

(1 − β2)(1 − γ2)
,

which are ordered according to the introduced formulas,

q1 ≤ q2 ≤ q3 ≤ q4 ≤ q5.

We are interested in the accuracy of the introduced estimates. Particularly we observe how q2

and q4 are approximated by q1 and q5, respectively. In Test 1 the solution is a polynomial of a low
order, while in Test 2, the solution has a sharp extremum of the form 1/((a − x)2(b − y)2 + δ).

Table 1: Error estimates for the h-hierarchical basis in Test 1.

dof q1 q2 q3 q4 q5

152 0.0082 0.0084 0.0107 0.0122 0.0125
302 0.0040 0.0040 0.0051 0.0059 0.0060
602 0.0020 0.0020 0.0025 0.0029 0.0029

Table 2: Error estimates for the p-hierarchical basis in Test 1.

dof q1 q2 q3 q4 q5

152 0.0102 0.0106 0.0107 0.0144 0.0150
302 0.0050 0.0051 0.0051 0.0070 0.0071
602 0.0025 0.0025 0.0025 0.0034 0.0035
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Table 3: Error estimates for an h-hierarchical basis in Test 2.

dof q1 q2 q3 q4 q5

152 0.8352 0.9432 1.1188 1.9482 2.2482
302 0.4351 0.4605 0.5406 0.9512 1.0117
602 0.2200 0.2271 0.2660 0.4691 0.4848

Table 4: Error estimates for the p-hierarchical basis in Test 2.

dof q1 q2 q3 q4 q5

152 1.0423 1.1004 1.1188 2.6956 2.8569
302 0.5238 0.5386 0.5406 1.3192 1.3578
602 0.2620 0.2657 0.2660 0.6508 0.6601

The lower a posteriori estimates obtained by using the space V q
h are more accurate compared

to the estimates which use V l
h. This fact is partly compensated by a greater density of the

stiffness matrix and by a worse conditioning of the diagonal block that corresponds to the finer
space. Nevertheless, the quantities q2 and q4 are well approximated by q1 and q5, respectively,
when using both of the spaces V l

h and V q
h .
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