Numerical behavior of inexact saddle point solvers

Pavel Jiránek1,2, Miroslav Rozložník1,2

Faculty of Mechatronics and Interdisciplinary Engineering Studies, Technical University of Liberec, Czech Republic1

and

Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic2

9th IMACS International Symposium on Iterative Methods in Scientific Computings
March 17–20, 2008, Lille, France
We consider a saddle point problem with the symmetric 2×2 block form

$$
\begin{pmatrix}
A & B \\
B^T & 0
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix} =
\begin{pmatrix}
f \\
0
\end{pmatrix}.
$$

- A is a square $n \times n$ nonsingular (symmetric positive definite) matrix,
- B is a rectangular $n \times m$ matrix of (full column) rank m.

Applications: mixed finite element approximations, weighted least squares, constrained optimization etc. [Benzi, Golub, and Liesen, 2005].
inexact solutions of inner systems + rounding errors → inexact saddle point solver

- inexact method
- exact method

maximum attainable accuracy

error / residual

iteration number
• Compute y as a solution of the Schur complement system

$$B^T A^{-1} By = B^T A^{-1} f,$$

• compute x as a solution of

$$Ax = f - By.$$

Systems with A are solved inexactly, the computed solution \bar{u} of $Au = b$ is interpreted an exact solution of a perturbed system

$$(A + \Delta A)\bar{u} = b + \Delta b, \quad \|\Delta A\| \leq \tau \|A\|, \quad \|\Delta b\| \leq \tau \|b\|, \quad \tau \kappa(A) \ll 1.$$
choose \(y_0 \), solve \(Ax_0 = f - By_0 \)

compute \(\alpha_k \) and \(p_k(y) \)

\[
y_{k+1} = y_k + \alpha_k p_k(y)
\]

solve \(Ap_k(x) = -Bp_k(y) \)

back-substitution:

A: \(x_{k+1} = x_k + \alpha_k p_k(x) \),

B: solve \(Ax_{k+1} = f - B y_{k+1} \),

C: solve \(Au_k = f - Ax_k - By_{k+1} \),

\[
x_{k+1} = x_k + u_k.
\]

\[
r_{k+1}^{(y)} = r_k^{(y)} - \alpha_k B^T p_k(x)
\]
The limiting (maximum attainable) accuracy is measured by the ultimate (asymptotic) values of:

1. the Schur complement residual: \(B^T A^{-1} f - B^T A^{-1} B y_k \);
2. the residuals in the saddle point system: \(f - A x_k - B y_k \) and \(-B^T x_k \);
3. the forward errors: \(x - x_k \) and \(y - y_k \).

Numerical example:

\[A = \text{tridiag}(1, 4, 1) \in \mathbb{R}^{100 \times 100}, \quad B = \text{rand}(100, 20), \quad f = \text{rand}(100, 1), \]

\[\kappa(A) = \|A\| \cdot \|A^{-1}\| = 7.1695 \cdot 0.4603 \approx 3.3001, \]

\[\kappa(B) = \|B\| \cdot \|B^\dagger\| = 5.9990 \cdot 0.4998 \approx 2.9983. \]
Accuracy in the outer iteration process

\[B^T (A + \Delta A)^{-1} B \hat{y} = B^T (A + \Delta A)^{-1} f, \]

\[\| B^T A^{-1} f - B^T A^{-1} B \hat{y} \| \leq \frac{\tau \kappa(A)}{1 - \tau \kappa(A)} \| A^{-1} \| \| B \| ^2 \| \hat{y} \|. \]

\[\| - B^T A^{-1} f + B^T A^{-1} By_k - r_k^{(y)} \| \leq \frac{O(\tau) \kappa(A)}{1 - \tau \kappa(A)} \| A^{-1} \| \| B \| (\| f \| + \| B \| Y_k). \]
\[-B^T A^{-1} f + B^T A^{-1} B y_k = -B^T x_k - B^T A^{-1} (f - A x_k - B y_k)\]

\[
\| f - A x_k - B y_k \| \leq \frac{O(\alpha_1) \kappa(A)}{1 - \tau \kappa(A)} (\| f \| + \| B \| Y_k),
\]

\[
\| -B^T x_k - r_k^{(y)} \| \leq \frac{O(\alpha_2) \kappa(A)}{1 - \tau \kappa(A)} \| A^{-1} \| \| B \| (\| f \| + \| B \| Y_k),
\]

\[
Y_k \equiv \max\{\| y_i \| \mid i = 0, 1, \ldots, k\}.
\]

<table>
<thead>
<tr>
<th>Back-substitution scheme</th>
<th>α_1</th>
<th>α_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: Generic update</td>
<td>τ</td>
<td>u</td>
</tr>
<tr>
<td>$x_{k+1} = x_k + \alpha_k p_k^{(x)}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B: Direct substitution</td>
<td>τ</td>
<td>τ</td>
</tr>
<tr>
<td>$x_{k+1} = A^{-1} (f - B y_{k+1})$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C: Corrected dir. subst.</td>
<td>u</td>
<td>τ</td>
</tr>
<tr>
<td>$x_{k+1} = x_k + A^{-1} (f - A x_k - B y_{k+1})$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

additional system with A
Generic update: $x_{k+1} = x_k + \alpha_k p_k(x)$
Direct substitution: $x_{k+1} = A^{-1}(f - By_{k+1})$
Corrected direct substitution: \(x_{k+1} = x_k + A^{-1}(f - Ax_k - By_{k+1}) \)
Forward error of computed approximate solution

\[\| x - x_k \| \leq \gamma_1 \| f - Ax_k - By_k \| + \gamma_2 \| - B^T x_k \|, \]
\[\| y - y_k \| \leq \gamma_2 \| f - Ax_k - By_k \| + \gamma_3 \| - B^T x_k \|, \]

\[\gamma_1 = \sigma_{\min}^{-1}(A), \quad \gamma_2 = \sigma_{\min}^{-1}(B), \quad \gamma_3 = \sigma_{\min}^{-1}(B^T A^{-1} B). \]
Conclusions

- All bounds of the limiting accuracy depend on the maximum norm of computed iterates, cf. [Greenbaum, 1997].
- The accuracy measured by the residuals of the saddle point problem depends on the choice of the back-substitution scheme [J, R, 2008].
- Care must be taken when solving nonsymmetric systems [J, R, 2008b].

The residuals in the outer iteration process and the forward errors of computed approximations are proportional to the backward error in solution of inner systems.
Thank you for your attention.

http://www.cs.cas.cz/~miro

Null-space projection method

- compute $x \in N(B^T)$ as a solution of the projected system
 \[(I - \Pi)A(I - \Pi)x = (I - \Pi)f,\]
- compute y as a solution of the least squares problem
 \[By \approx f - Ax,\]

Π is the orthogonal projector onto $R(B)$.

The least squares with B are solved inexactly, i.e. the computed solution \bar{v} of $Bv \approx c$ is an exact solution of a perturbed least squares problem

\[(B + \Delta B)\bar{v} \approx c + \Delta c, \quad \|\Delta B\| \leq \tau\|B\|, \quad \|\Delta c\| \leq \tau\|c\|, \quad \tau\kappa(B) \ll 1.\]
choose x_0, solve $By_0 \approx f - Ax_0$

compute α_k and $p_k(x) \in N(B^T)$

$x_{k+1} = x_k + \alpha_k p_k(x)$

<table>
<thead>
<tr>
<th>solve $Bp_k(y) \approx r_k(x) - \alpha_k Ap_k(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>back-substitution:</td>
</tr>
<tr>
<td>A: $y_{k+1} = y_k + p_k(y)$,</td>
</tr>
<tr>
<td>B: solve $By_{k+1} \approx f - Ax_{k+1}$,</td>
</tr>
<tr>
<td>C: solve $Bv_k \approx f - Ax_{k+1} - By_k$,</td>
</tr>
<tr>
<td>$y_{k+1} = y_k + v_k$.</td>
</tr>
</tbody>
</table>

$r_{k+1}^{(x)} = r_k^{(x)} - \alpha_k Ap_k(x) - Bp_k(y)$
Accuracy in the saddle point system

\[\| f - Ax_k - By_k - r_k^{(x)} \| \leq \frac{O(\alpha_3)\kappa(B)}{1 - \tau\kappa(B)} (\| f \| + \| A \| X_k), \]

\[\| - B^T x_k \| \leq \frac{O(\tau)\kappa(B)}{1 - \tau\kappa(B)} \| B \| X_k, \]

\[X_k \equiv \max\{\| x_i \| | i = 0, 1, \ldots, k\}. \]

<table>
<thead>
<tr>
<th>Back-substitution scheme</th>
<th>(\alpha_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: Generic update</td>
<td>(u)</td>
</tr>
<tr>
<td>(y_{k+1} = y_k + p_k^{(y)})</td>
<td></td>
</tr>
<tr>
<td>B: Direct substitution</td>
<td>(\tau)</td>
</tr>
<tr>
<td>(y_{k+1} = B^\dagger (f - Ax_{k+1}))</td>
<td></td>
</tr>
<tr>
<td>C: Corrected dir. subst.</td>
<td>(u)</td>
</tr>
<tr>
<td>(y_{k+1} = y_k + B^\dagger (f - Ax_{k+1} - By_k))</td>
<td></td>
</tr>
</tbody>
</table>

\{ additional least square with B \}
Generic update: $y_{k+1} = y_k + p_k^{(y)}$
Direct substitution: \(y_{k+1} = B^\dagger(f - Ax_k + 1) \)

\[
\begin{align*}
\tau &= O(u) \\
\tau &= 10^{-2} \\
\tau &= 10^{-6} \\
\tau &= 10^{-10}
\end{align*}
\]

Iteration number
Relative residual norms \(\|f - Ax_k - By_k\|/\|f - Ax_0 - By_0\| \), \(\|r(x)_k\|/\|r(x)_0\| \)
Corrected direct substitution: \[y_{k+1} = y_k + B^\dagger (f - Ax_{k+1} - By_k) \]

