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Introduction

Motivation:

efficient numerical computing of resonance frequencies of piezoelectric
resonators, which would be possible for large problems (complicated shapes)

why modelling? - analytical method have restricted area of their usage

Solving:
* physical description of the piezoelectric material

* application of FEM

* large sparse linear algebraic system, which defines the generalized eigenvalue
problem

resonance frequencies are subsequently found by solving this algebraic problem

typically, we are not interested in all eigenvalues (resonance frequencies)
⇒ for determining of several of them we consider iterative methods
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Physical formulation

linear piezoelectric constitutive equations:

generalized Hook’s law

Tij = cijkl Skl − dkij Ek, i, j = 1, 2, 3, (1)

equation of the direct piezoelectric effect

Dk = dkij Sij + εkj Ej, k = 1, 2, 3. (2)

symmetric stress tensor T, symmetric strain tensor S,
vector of intensity of electric field E, vector of electric displacement D

cijkl, dkij , εij ... material tensors (c is symmetric in all four indices and PD, d is
symmetric in last two indices and ε is symmetric and PD)
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Physical formulation

Sij =
1

2

[

∂ũi

∂xj

+
∂ũj

∂xi

]

, Ek = −
∂ϕ̃

∂xk

, i, j, k = 1, 2, 3,

ũ = (ũ1, ũ2, ũ3)
T is the displacement vector and ϕ̃ is the electric potential

governing equation for piezoelectric continuum

%
∂2ũi

∂t2
=

∂Tij

∂xj

i = 1, 2, 3, x ∈ Ω, t ∈ (0, T), (3)

∇. D =
∂Dj

∂xj

= 0, (4)

with density %, volume of the resonator Ω and its boundary Γ.
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Physical formulation

(1) + (2) + (3) + (4) ⇒

%
∂2ũi

∂t2
=

∂

∂xj

(

cijkl

1

2

[

∂ũk

∂xl

+
∂ũl

∂xk

]

+dkij

∂ϕ̃

∂xk

)

i = 1, 2, 3, (5)

0 =
∂

∂xk

(

dkij

1

2

[

∂ũi

∂xj

+
∂ũj

∂xi

]

−εkj

∂ϕ̃

∂xj

)

. (6)

initial conditions, Dirichlet boundary conditions and Neumann boundary
conditions are added:

ũi(., 0) = ui, x ∈ Ω, ũi = 0, x ∈ Γu, Tijnj = fi, x ∈ Γf , i = 1, 2, 3, (7)

ϕ̃(., 0) = ϕ, ϕ̃ = ϕD, x ∈ Γϕ, Dknk = q, x ∈ Γq,

where
Γu ∪ Γf = Γ, Γu ∩ Γf = ∅, Γϕ ∪ Γq = Γ, Γϕ ∩ Γq = ∅.
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Physical formulation

Right-hand side fi represents mechanical excitation by external mechanical
forces, q denotes electrical excitation by imposing surface charge (in the case of
free oscillations, they are both zero

Equations (5)-(6) define the problem of harmonic oscillation of the piezoelectric
continuum under given conditions (7)

We will discretize the problem using FEM:

* standard weak formulation, H0, using boundary conditions

* discretization using the linear Lagrange finite elements in 3D (with GMSH code)

* system of ODEs for unknown values of u, ϕ in nodes of discretization results
(our c++ code)
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Discretization of the problem, BC

MÜ + KU + PTΦ = F,

PU − EΦ = Q.

X

X

X

after introduction of Dirichlet boundary conditions, sub-matrices M, K and E are
symmetric and positive definite
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Point of interest

resonance ⇐ frequency of excitation = eigenfrequency of the resonator

eigenfrequencies - free harmonic oscillation

(

K − ω2M PT

P −E

)(

U

Φ

)

=

(

0

0

)

,

where ω is the frequency of oscillation

eigenfrequencies can be computed by solving the generalized eigenvalue
problem

AX = λBX (8)

with

A =

(

K PT

P −E

)

, B =

(

M 0

0 0

)

, λ = ω2,

A being symmetric and B being symmetric and positive semi-definite matrix
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Numerical solution

for solving the generalized eigenvalue problem (8), we use implicitly restarted
Arnoldi method implemented in Arpack library (Fortran code)

inner steps in the process use algorithm SYMMLQ for solving the symmetric
non-definite linear systems

partial eigenvalue problem with possibility of shift

the method solves the partial eigenvalue problem (computes several
eigenvalues with high precision)

deals with the sparseness of the matrices

static condensation, i.e. to transform the problem (8) to the positive definite eigenvalue problem

K
?
U = λMU, K

?
= K− P

T
E
−1

P.

this approach was used in [Maryska, Novak, Ra - ECMS 03]

it losts the sparseness of the matrices; generalized Schur decomposition

Generalized Eigenvalue Problem in FEM Modelling of the Resonance Frequencies Piezoelectric Resonators – p.10/16



Numerical solution

for solving the generalized eigenvalue problem (8), we use implicitly restarted
Arnoldi method implemented in Arpack library (Fortran code)

inner steps in the process use algorithm SYMMLQ for solving the symmetric
non-definite linear systems

partial eigenvalue problem with possibility of shift

the method solves the partial eigenvalue problem (computes several
eigenvalues with high precision)

deals with the sparseness of the matrices

static condensation, i.e. to transform the problem (8) to the positive definite eigenvalue problem

K
?
U = λMU, K

?
= K− P

T
E
−1

P.

this approach was used in [Maryska, Novak, Ra - ECMS 03]

it losts the sparseness of the matrices; generalized Schur decomposition

Generalized Eigenvalue Problem in FEM Modelling of the Resonance Frequencies Piezoelectric Resonators – p.10/16



Numerical solution

for solving the generalized eigenvalue problem (8), we use implicitly restarted
Arnoldi method implemented in Arpack library (Fortran code)

inner steps in the process use algorithm SYMMLQ for solving the symmetric
non-definite linear systems

partial eigenvalue problem with possibility of shift

the method solves the partial eigenvalue problem (computes several
eigenvalues with high precision)

deals with the sparseness of the matrices

static condensation, i.e. to transform the problem (8) to the positive definite eigenvalue problem

K
?
U = λMU, K

?
= K− P

T
E
−1

P.

this approach was used in [Maryska, Novak, Ra - ECMS 03]

it losts the sparseness of the matrices; generalized Schur decomposition

Generalized Eigenvalue Problem in FEM Modelling of the Resonance Frequencies Piezoelectric Resonators – p.10/16



Numerical solution

for solving the generalized eigenvalue problem (8), we use implicitly restarted
Arnoldi method implemented in Arpack library (Fortran code)

inner steps in the process use algorithm SYMMLQ for solving the symmetric
non-definite linear systems

partial eigenvalue problem with possibility of shift

the method solves the partial eigenvalue problem (computes several
eigenvalues with high precision)

deals with the sparseness of the matrices

static condensation, i.e. to transform the problem (8) to the positive definite eigenvalue problem

K
?
U = λMU, K

?
= K− P

T
E
−1

P.

this approach was used in [Maryska, Novak, Ra - ECMS 03]

it losts the sparseness of the matrices; generalized Schur decomposition

Generalized Eigenvalue Problem in FEM Modelling of the Resonance Frequencies Piezoelectric Resonators – p.10/16



Numerical solution

for solving the generalized eigenvalue problem (8), we use implicitly restarted
Arnoldi method implemented in Arpack library (Fortran code)

inner steps in the process use algorithm SYMMLQ for solving the symmetric
non-definite linear systems

partial eigenvalue problem with possibility of shift

the method solves the partial eigenvalue problem (computes several
eigenvalues with high precision)

deals with the sparseness of the matrices

static condensation, i.e. to transform the problem (8) to the positive definite eigenvalue problem

K
?
U = λMU, K

?
= K− P

T
E
−1

P.

this approach was used in [Maryska, Novak, Ra - ECMS 03]

it losts the sparseness of the matrices; generalized Schur decomposition

Generalized Eigenvalue Problem in FEM Modelling of the Resonance Frequencies Piezoelectric Resonators – p.10/16



Numerical solution

for solving the generalized eigenvalue problem (8), we use implicitly restarted
Arnoldi method implemented in Arpack library (Fortran code)

inner steps in the process use algorithm SYMMLQ for solving the symmetric
non-definite linear systems

partial eigenvalue problem with possibility of shift

the method solves the partial eigenvalue problem (computes several
eigenvalues with high precision)

deals with the sparseness of the matrices

static condensation, i.e. to transform the problem (8) to the positive definite eigenvalue problem

K
?
U = λMU, K

?
= K− P

T
E
−1

P.

this approach was used in [Maryska, Novak, Ra - ECMS 03]

it losts the sparseness of the matrices; generalized Schur decomposition

Generalized Eigenvalue Problem in FEM Modelling of the Resonance Frequencies Piezoelectric Resonators – p.10/16



Numerical solution

for solving the generalized eigenvalue problem (8), we use implicitly restarted
Arnoldi method implemented in Arpack library (Fortran code)

inner steps in the process use algorithm SYMMLQ for solving the symmetric
non-definite linear systems

partial eigenvalue problem with possibility of shift

the method solves the partial eigenvalue problem (computes several
eigenvalues with high precision)

deals with the sparseness of the matrices

static condensation, i.e. to transform the problem (8) to the positive definite eigenvalue problem

K
?
U = λMU, K

?
= K− P

T
E
−1

P.

this approach was used in [Maryska, Novak, Ra - ECMS 03]

it losts the sparseness of the matrices; generalized Schur decomposition

Generalized Eigenvalue Problem in FEM Modelling of the Resonance Frequencies Piezoelectric Resonators – p.10/16



Numerical solution

what is the shift:

we can focust to wanted part of the spectra - time and memory saving, higher
precision
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Oscillation of planparallel quartz resonator

shear vibration mode in x direction

h

R

rr
mountingmounting

u=0u=0
electrodes

three different samples

sample R (mm) r (mm) h (mm) res. freq.

1 7 3.5 0.333 5 MHz
2 3.975 2.5 0.168 10 MHz
3 3.475 1.5 0.0833 20 MHz
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Results

comparison of measured and computed resonance frequencies:

sample measured res. frequency (kHz) computed res. frequency (kHz)

1 5000.200 5080
2 10000.125 10104
3 19990.700 20100

Convergence of computed resonance frequency

(sample 1)

4900

5100

5300

5500

5700

5900

6100

50 100 150 200 250 300 350 400 450 500 550 600

number of elements

k
H

z

resonance frequency 5 Mhz
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Results

rezidual in Arnoldi algorithm and # of inner iteration in SYMMLQ
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rezidual about 10−13 in worst case
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Postprocessing

visulization in GMSH

5 MHz

problems with recognition of vibrational modes - which are the right?
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Conclusion

numerical alhorithm using Krylov subspace method brings fast and efficient tool
for solving the GEP and the resonance frequencies

handling with the system matrices is more simple and it saves their sparse
structure

computing is much faster (depending on the problem and its discretization)

* about 100 times faster than methods working with dense matrices and solving
the full eigenproblems - Lapack etc... (moreover, they are not usable for larger
problems)

* about 10 times faster than black boxes working with sparse matrices - Matlab
etc...

What to focust on:

postprocessing

feedback with reality

physicians usually know, what should result and why; focust on practical
problems
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