Limiting accuracy of inexact saddle point solvers

Pavel Jiránek ${ }^{1,2}$, Miroslav Rozložník ${ }^{1,2}$
Faculty of Mechatronics and Interdisciplinary Engineering Studies,
Technical University of Liberec,
Czech Republic ${ }^{1}$
and
Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic ${ }^{2}$

22nd Biennial Conference on Numerical Analysis, University of Dundee, June 26-29, 2007

Saddle point problems

We consider a saddle point problem with the symmetric 2×2 block form

$$
\left(\begin{array}{cc}
A & B \\
B^{T} & 0
\end{array}\right)\binom{x}{y}=\binom{f}{0} .
$$

- A is a square $n \times n$ nonsingular (symmetric positive definite) matrix, - B is a rectangular $n \times m$ matrix of (full column) rank m.

Applications: mixed finite element approximations, weighted least squares, constrained optimization etc. [Benzi, Golub, and Liesen, 2005].

Schur complement reduction method

- Compute y as a solution of the Schur complement system

$$
B^{T} A^{-1} B y=B^{T} A^{-1} f
$$

- compute x as a solution of

$$
A x=f-B y
$$

Systems with A are solved inexactly, the computed solution \bar{u} of $A u=b$ is interpreted an exact solution of a perturbed system

$$
(A+\Delta A) \bar{u}=b+\Delta b,\|\Delta A\| \leq \tau\|A\|,\|\Delta b\| \leq \tau\|b\|, \tau \kappa(A) \ll 1
$$

Iterative solution of the Schur complement system

choose y_{0}, solve $A x_{0}=f-B y_{0}$
compute α_{k} and $p_{k}^{(y)}$
$y_{k+1}=y_{k}+\alpha_{k} p_{k}^{(y)}$
solve $A p_{k}^{(x)}=-B p_{k}^{(y)}$
back-substitution:
A: $x_{k+1}=x_{k}+\alpha_{k} p_{k}^{(x)}$,
B: solve $A x_{k+1}=f-B y_{k+1}, \quad$ iteration
C: solve $A u_{k}=f-A x_{k}-B y_{k+1}$, $x_{k+1}=x_{k}+u_{k}$.
$r_{k+1}^{(y)}=r_{k}^{(y)}-\alpha_{k} B^{T} p_{k}^{(x)}$
outer
iteration

Measure of the limiting accuracy

The limiting (maximum attainable) accuracy is measured by the ultimate (asymptotic) values of:
(1) the Schur complement residual: $B^{T} A^{-1} f-B^{T} A^{-1} B y_{k}$;
(2) the residuals in the saddle point system: $f-A x_{k}-B y_{k}$ and $-B^{T} x_{k}$;
(3) the forward errors: $x-x_{k}$ and $y-y_{k}$.

Numerical example:

$$
\begin{gathered}
A=\operatorname{tridiag}(1,4,1) \in \mathbb{R}^{100 \times 100}, B=\operatorname{rand}(100,20), f=\operatorname{rand}(100,1) \\
\kappa(A)=\|A\| \cdot\left\|A^{-1}\right\|=7.1695 \cdot 0.4603 \approx 3.3001 \\
\kappa(B)=\|B\| \cdot\left\|B^{\dagger}\right\|=5.9990 \cdot 0.4998 \approx 2.9983
\end{gathered}
$$

Accuracy in the outer iteration process

$$
\begin{gathered}
B^{T}(A+\Delta A)^{-1} B \hat{y}=B^{T}(A+\Delta A)^{-1} f, \\
\left\|B^{T} A^{-1} f-B^{T} A^{-1} B \hat{y}\right\| \leq \frac{\tau \kappa(A)}{1-\tau \kappa(A)}\left\|A^{-1}\right\|\|B\|^{2}\|\hat{y}\| . \\
\left\|-B^{T} A^{-1} f+B^{T} A^{-1} B y_{k}-r_{k}^{(y)}\right\| \leq \frac{O(\tau) \kappa(A)}{1-\tau \kappa(A)}\left\|A^{-1}\right\|\|B\|\left(\|f\|+\|B\| Y_{k}\right) .
\end{gathered}
$$

Accuracy in the saddle point system

$$
\begin{gathered}
-B^{T} A^{-1} f+B^{T} A^{-1} B y_{k}=-B^{T} x_{k}-B^{T} A^{-1}\left(f-A x_{k}-B y_{k}\right) \\
\left\|f-A x_{k}-B y_{k}\right\| \leq \frac{O\left(\alpha_{1}\right) \kappa(A)}{1-\tau \kappa(A)}\left(\|f\|+\|B\| Y_{k}\right), \\
\left\|-B^{T} x_{k}-r_{k}^{(y)}\right\| \leq \frac{O\left(\alpha_{2}\right) \kappa(A)}{1-\tau \kappa(A)}\left\|A^{-1}\right\|\|B\|\left(\|f\|+\|B\| Y_{k}\right), \\
Y_{k} \equiv \max \left\{\left\|y_{i}\right\| \mid i=0,1, \ldots, k\right\} .
\end{gathered}
$$

\(\left.$$
\begin{array}{|ll||c|c|}\hline \text { Back-substitution scheme } & \alpha_{1} & \alpha_{2} \\
\hline \text { A: } & \begin{array}{l}\text { Generic update } \\
x_{k+1}=x_{k}+\alpha_{k} p_{k}^{(x)}\end{array} & \tau & u \\
\hline \text { B: } & \text { Direct substitution } \\
& x_{k+1}=A^{-1}\left(f-B y_{k+1}\right) & \tau & \tau \\
\hline \text { C: } & \begin{array}{l}\text { Corrected dir. subst. } \\
\\
x_{k+1}=x_{k}+A^{-1}\left(f-A x_{k}-B y_{k+1}\right)\end{array}
$$ \& u \& \tau

\hline\end{array}\right\}\)| additional |
| :--- |
| system with A |

Forward error of computed approximate solution

$$
\begin{gathered}
\left\|x-x_{k}\right\| \leq \gamma_{1}\left\|f-A x_{k}-B y_{k}\right\|+\gamma_{2}\left\|-B^{T} x_{k}\right\| \\
\left\|y-y_{k}\right\| \leq \gamma_{2}\left\|f-A x_{k}-B y_{k}\right\|+\gamma_{3}\left\|-B^{T} x_{k}\right\| \\
\gamma_{1}=\sigma_{\min }^{-1}(A), \gamma_{2}=\sigma_{\min }^{-1}(B), \gamma_{3}=\sigma_{\min }^{-1}\left(B^{T} A^{-1} B\right) .
\end{gathered}
$$

Conclusions

- All bounds of the limiting accuracy depend on the maximum norm of computed iterates, cf. [Greenbaum, 1997].
- The accuracy measured by the residuals of the saddle point problem depends on the choice of the back-substitution scheme [J, R, 2006].
- Care must be taken when solving nonsymmetric systems [J, R, 2007].

- The residuals in the outer iteration process and the forward errors of computed approximations are proportional to the backward error in solution of inner systems.

Thank you for your attention.

http://www.cs.cas.cz/~miro

References

M. Benzi, G. H. Golub, and J. Liesen. Numerical solution of saddle point problems. Acta Numerica, pages 1-137, 2005.
A. Greenbaum. Estimating the attainable accuracy of recursively computed residual methods. SIAM J. Matrix Anal. Appl., 18(3):535-551, 1997.
P. Jiránek and M. Rozložník. Maximum attainable accuracy of inexact saddle point solvers. 2007a. To appear in SIAM J. Matrix Anal. Appl.
P. Jiránek and M. Rozložník. Limiting accuracy of segregated solution methods for nonsymmetric saddle point problems. 2007b. To appear in J. Comp. Appl. Math.

Null-space projection method

- compute $x \in N\left(B^{T}\right)$ as a solution of the projected system

$$
(I-\Pi) A(I-\Pi) x=(I-\Pi) f,
$$

- compute y as a solution of the least squares problem

$$
B y \approx f-A x,
$$

Π is the orthogonal projector onto $R(B)$.
The least squares with B are solved inexactly, i.e. the computed solution \bar{v} of $B v \approx c$ is an exact solution of a perturbed least squares problem

$$
(B+\Delta B) \bar{v} \approx c+\Delta c,\|\Delta B\| \leq \tau\|B\|,\|\Delta c\| \leq \tau\|c\|, \tau \kappa(B) \ll 1
$$

Iterative solution of the null-space projected system

choose x_{0}, solve $B y_{0} \approx f-A x_{0}$
compute α_{k} and $p_{k}^{(x)} \in N\left(B^{T}\right)$

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k}^{(x)}
$$

solve $B p_{k}^{(y)} \approx r_{k}^{(x)}-\alpha_{k} A p_{k}^{(x)}$
back-substitution:
A: $y_{k+1}=y_{k}+p_{k}^{(y)}$,
inner
B: solve $B y_{k+1} \approx f-A x_{k+1}, \quad$ iteration
C: solve $B v_{k} \approx f-A x_{k+1}-B y_{k}$,

$$
y_{k+1}=y_{k}+v_{k}
$$

$$
r_{k+1}^{(x)}=r_{k}^{(x)}-\alpha_{k} A p_{k}^{(x)}-B p_{k}^{(y)}
$$

Accuracy in the saddle point system

$$
\begin{gathered}
\left\|f-A x_{k}-B y_{k}-r_{k}^{(x)}\right\| \leq \frac{O\left(\alpha_{3}\right) \kappa(B)}{1-\tau \kappa(B)}\left(\|f\|+\|A\| X_{k}\right) \\
\left\|-B^{T} x_{k}\right\| \leq \frac{O(\tau) \kappa(B)}{1-\tau \kappa(B)}\|B\| X_{k} \\
X_{k} \equiv \max \left\{\left\|x_{i}\right\| \mid i=0,1, \ldots, k\right\}
\end{gathered}
$$

Back-substitution scheme		α_{3}
A:	Generic update $y_{k+1}=y_{k}+p_{k}^{(y)}$	u
B:	Direct substitution $y_{k+1}=B^{\dagger}\left(f-A x_{k+1}\right)$	τ
C:	Corrected dir. subst. $y_{k+1}=y_{k}+B^{\dagger}\left(f-A x_{k+1}-B y_{k}\right)$	u

