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Pavel Jiránek∗, Miroslav Rozložnı́k∗∗
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1. Introduction

We consider a saddle point problem with the symmetric 2×2
block form (

A B

BT 0

) (
x
y

)
=

(
f
0

)
, (1)

where A is an n×n symmetric positive definite matrix and B
is an n×m matrix of a full column rank. Such systems arise
in many applications including the finite element approxi-
mation of second order elliptic partial differential equations,
weighted least squares and quadratic optimization with lin-
ear constraints; see [1] and the references therein.
We present our results on the numerical stability of two
representatives of segregated methods for solving saddle
point systems – the Schur complement reduction method
and the null-space projection method, see [2, 3]. A segre-
gated method transforms (1) into a reduced system for x or
y which is solved by some iterative method. Such a scheme
requires matrix-vector multiplications which need solutions
of inner systems with A or B. We assume that these sys-
tems are solved inexactly with the uniformly bounded back-
ward error. The remaining component of the approximate
solution vector is found by a back-substitution into (1) which
can be done in several ways. Here we denote them as the
scheme A (generic update), B (direct substitution) and C
(corrected direct substitution).
The errors due to the inexact solution of inner systems and
the roundoff (unit roundoff is denoted as u) are propagated
throughout the iteration process. This affects the limiting
accuracy of the computed solution which we measure in
terms of the residuals in outer iteration, the residuals in the
saddle point system and the forward errors.
The theoretical results are illustrated on a simple numerical
example with n = 100, m = 20, A = tridiag(1, 4, 1), and B
and f are chosen randomly. We have κ(A) = ‖A‖ · ‖A−1‖ =
7.1695 · 0.4603, κ(B) = ‖B‖ · ‖B†‖ = 5.9990 · 0.4998.

2. Schur complement reduction method

The Schur complement reduction method is based on the
equivalent formulation of (1)(

A B
0 S

) (
x
y

)
=

(
f

BTA−1f

)
.

The symmetric positive definite system with the Schur com-
plement matrix S ≡ BTA−1B is solved iteratively. Given
an approximation yk (k = 0, 1, 2, . . .) to the solution vector
component y, the corresponding approximation xk to x is
found by solving Axk = f − Byk. We consider three differ-
ent back-substitution formulas summarized in the following
algorithm:

choose y0, solve Ax0 = f −By0

for k = 0, 1, 2, . . . do :

compute αk and p
(y)
k

yk+1 = yk + αkp
(y)
k

solve Ap
(x)
k = −Bp

(y)
k

back-substitution:

A: xk+1 = xk + αkp
(x)
k ,

B: solve Axk+1 = f −Byk+1,

C: solve Auk = f − Axk −Byk+1,

xk+1 = xk + uk.


inner
iteration

r
(y)
k+1 = r

(y)
k − αkB

Tp
(x)
k



outer
iteration

Since it can be inefficient to solve the systems with A accu-
rately, we assume the computed solution v̂ of some system
Av = b is an exact solution of (A + ∆A)v̂ = b + ∆b with
‖∆A‖ ≤ τ‖A‖, ‖∆b‖ ≤ τ‖b‖ and τκ(A) � 1.
The gap between the residual in the Schur complement
system and the updated residual r

(y)
k can be bounded as

‖−BTA−1f+Syk−r
(y)
k ‖ ≤ O(τ )κ(A)

1− τκ(A)
‖A−1‖‖B‖(‖f‖+‖B‖Yk),

where Yk ≡ maxi≤k ‖yi‖. Hence the accuracy in the
outer iteration does not depend on the back-substitution
scheme and the ultimate level of the residual in the
Schur complement system is proportional to τ .
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Residual in the Schur
complements system
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For the residuals in the system (1) we have the estimates

‖f − Axk −Byk‖ ≤
O(α1)κ(A)

1− τκ(A)
(‖f‖ + ‖B‖Yk),

‖ −BTxk − r
(y)
k ‖ ≤ O(α2)κ(A)

1− τκ(A)
‖A−1‖‖B‖(‖f‖ + ‖B‖Yk),

where
α1 = τ , α2 = u for the scheme A,
α1 = τ , α2 = τ for the scheme B,
α1 = u, α2 = τ for the scheme C.

The accuracy of the residuals f − Axk − Byk and −BTxk
in the saddle point system thus depends on the back-
substitution scheme.
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Scheme A
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For the forward errors we have

‖x− xk‖ ≤ γ1‖f − Axk −Byk‖ + γ2‖ −BTxk‖,
‖y − yk‖ ≤ γ2‖f − Axk −Byk‖ + γ3‖ −BTxk‖,

where γ1 ≡ σ−1
min(A), γ2 ≡ κ1/2(A)σ−1

min(B), γ3 ≡ σ−1
min(S)

and hence their are both proportional to τ independently on
the back-substitution scheme.

3. Null-space projection method

The null-space projection method uses the second equa-
tion of (1) indicating that x ∈ N(BT ). The solution vector
component x can be thus found by solving the projected
system PAPx = Pf , where P is the orthogonal projector
onto N(BT ). This symmetric positive semidefinite system is
then solved iteratively producing iterates xk (k = 0, 1, 2, . . .).
The corresponding iterate yk is found as a least squares
solution of Byk ≈ f − Axk. Such a back-substitution can
be performed in several ways and it is summarized in the
following algorithm:

choose x0, solve By0 ≈ f − Ax0

compute αk and p
(x)
k ∈ N(BT )

xk+1 = xk + αkp
(x)
k

solve Bp
(y)
k ≈ r

(x)
k − αkAp

(x)
k

back-substitution:

A: yk+1 = yk + p
(y)
k ,

B: solve Byk+1 ≈ f − Axk+1,

C: solve Bvk ≈ f − Axk+1 −Byk,

yk+1 = yk + vk.


inner
iteration

r
(x)
k+1 = r

(x)
k − αkAp

(x)
k −Bp

(y)
k



outer
iteration

The algorithm relies on the effective solution of least
squares problems with B. We assume that the computed
solution ŵ of some problem Bw ≈ c is an exact solution of

(B + ∆B)ŵ = c + ∆c, where ‖∆B‖ ≤ τ‖B‖, ‖∆c‖ ≤ τ‖c‖,
τκ(B) � 1.
The gap between the residual in the projected system and
its approximation r

(x)
k can be estimated as

‖Pf − PAPxk − r
(x)
k ‖ ≤ O(τ )κ(B)

1− τκ(B)
(‖f‖ + ‖A‖Xk),

where Xk ≡ maxi≤k ‖xi‖ and thus the accuracy in
the projected system is ultimately proportional to τ
and it does not depend on the actual scheme.
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For the residuals in (1) we have the bounds

‖f − Axk −Byk − r
(x)
k ‖ ≤ O(α3)κ(B)

1− τκ(B)
(‖f‖ + ‖A‖Xk),

‖ −BTxk‖ ≤
O(τ )κ(B)

1− τκ(B)
‖B‖Xk

with
α3 = u for the scheme A,
α3 = τ for the scheme B,
α3 = u for the scheme C.

Hence the ultimate level of f − Axk − Byk depends on the
actual back-substitution scheme which is not the case here
for the residual −BTxk affected only by the departure of
direction vectors p

(x)
k from N(BT ).
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The forward errors behave similarly as in the Schur comple-
ment reduction method – they do not depend on the actual
scheme and are ultimately proportional to τ .
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