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Faculty of Mechatronics and Interdisciplinary Engineering Studies,
Technical University of Liberec,

Czech Republic1

and

Institute of Computer Science,
Czech Academy of Sciences, Prague,

Czech Republic2
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Introduction Saddle point problems

Saddle point problems

We consider a saddle point problem with the symmetric 2× 2 block form„
A B

BT 0

« „
x
y

«
=

„
f
0

«
.

A is a square n× n nonsingular (symmetric positive definite) matrix,

B is a rectangular n×m matrix of (full column) rank m.

Applications: mixed finite element approximations, weighted least squares,
constrained optimization etc. [Benzi, Golub, and Liesen, 2005].

3 Pavel Jiránek, Miroslav Rozložńık On the limiting accuracy of segregated saddle point solvers



Introduction Segregated solution methods for solving saddle point systems

Segregated solution methods

1 Schur complement reduction method:
compute y as a solution of the Schur complement system

BT A−1By = BT A−1f,

compute x as a solution of

Ax = f −By.

2 Null-space projection method:
compute x ∈ N(BT ) as a solution of the projected system

(I −Π)A(I −Π)x = (I −Π)f,

compute y as a solution of the least squares problem

By ≈ f −Ax,

Π is the orthogonal projector onto R(B).
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Introduction Iterative solution of reduced systems

Iterative solution of the Schur complement system

choose y0, solve Ax0 = f −By0

compute αk and p
(y)
k

yk+1 = yk + αkp
(y)
k˛̨̨̨

˛̨̨̨
˛̨̨̨
˛̨̨

solve Ap
(x)
k = −Bp

(y)
k

back-substitution:

A: xk+1 = xk + αkp
(x)
k ,

B: solve Axk+1 = f −Byk+1,

C: solve Auk = f −Axk −Byk+1,

xk+1 = xk + uk.

9>>>>>>>>>=>>>>>>>>>;
inner
iteration

r
(y)
k+1 = r

(y)
k − αkBT p

(x)
k

9>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>;

outer
iteration

Systems with A are solved inexactly, i.e. the computed solution ū of Au = b is

an exact solution of a perturbed system

(A + ∆A)ū = b + ∆b, ‖∆A‖ ≤ τ‖A‖, ‖∆b‖ ≤ τ‖b‖, τκ(A) � 1.
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Introduction Iterative solution of reduced systems

Iterative solution of the null-space projected system

choose x0, solve By0 ≈ f −Ax0

compute αk and p
(x)
k ∈ N(BT )

xk+1 = xk + αkp
(x)
k˛̨̨̨

˛̨̨̨
˛̨̨̨
˛̨̨

solve Bp
(y)
k ≈ r

(x)
k − αkAp

(x)
k

back-substitution:

A: yk+1 = yk + p
(y)
k ,

B: solve Byk+1 ≈ f −Axk+1,

C: solve Bvk ≈ f −Axk+1 −Byk,

yk+1 = yk + vk.

9>>>>>>>>>=>>>>>>>>>;
inner
iteration

r
(x)
k+1 = r

(x)
k − αkAp

(x)
k −Bp

(y)
k

9>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>;

outer
iteration

The least squares with B are solved inexactly, i.e. the computed solution v̄ of

Bv ≈ c is an exact solution of a perturbed least squares problem

(B + ∆B)v̄ ≈ c + ∆c, ‖∆B‖ ≤ τ‖B‖, ‖∆c‖ ≤ τ‖c‖, τκ(B) � 1.
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Limiting (maximum attainable) accuracy of segregated methods

Measure of the limiting accuracy

The limiting (maximum attainable) accuracy is measured by the ultimate
(asymptotic) values of:

1 the residuals in the outer iteration process:
the Schur complement residual BT A−1f −BT A−1Byk,
the residual (I −Π)f − (I −Π)A(I −Π)xk in the projected system;

2 the residuals in the saddle point system: f −Axk −Byk and −BT xk;

3 the forward errors: x− xk and y − yk.

Our results are illustrated on a simple numerical experiment:

A = tridiag(1, 4, 1) ∈ R100×100, B = rand(100, 20), f = rand(100, 1),

κ(A) = ‖A‖ · ‖A−1‖ = 7.1695 · 0.4603 ≈ 3.3001,

κ(B) = ‖B‖ · ‖B†‖ = 5.9990 · 0.4998 ≈ 2.9983.
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Limiting (maximum attainable) accuracy of segregated methods Accuracy in the outer iteration process

Accuracy in the outer iteration process

1 The Schur complement reduction method:

‖−BT A−1f +BT A−1Byk−r
(y)
k ‖ ≤ O(τ)κ(A)

1− τκ(A)
‖A−1‖‖B‖(‖f‖+‖B‖Yk).

2 The null-space projection method:

‖(I−Π)f−(I−Π)A(I−Π)xk−(I−Π)r
(x)
k ‖ ≤ O(τ)κ(B)

1− τκ(B)
(‖f‖+‖A‖Xk).
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Limiting (maximum attainable) accuracy of segregated methods Accuracy in the saddle point system

Accuracy in the saddle point system – Schur complement reduction

‖f −Axk −Byk‖ ≤
O(α1)κ(A)

1− τκ(A)
(‖f‖+ ‖B‖Yk),

‖ −BT xk − r
(y)
k ‖ ≤ O(α2)κ(A)

1− τκ(A)
‖A−1‖‖B‖(‖f‖+ ‖B‖Yk),

Yk ≡ max{‖yi‖ | i = 0, 1, . . . , k}.

Back-substitution scheme α1 α2

A: Generic update

xk+1 = xk + αkp
(x)
k

τ u

B: Direct substitution
xk+1 = A−1(f −Byk+1)

τ τ

C: Corrected dir. subst.
xk+1 = xk + A−1(f −Axk −Byk+1)

u τ

}
additional
system with A
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Limiting (maximum attainable) accuracy of segregated methods Accuracy in the saddle point system

Accuracy in the saddle point system – null-space projection

‖f −Axk −Byk − r
(x)
k ‖ ≤ O(α3)κ(B)

1− τκ(B)
(‖f‖+ ‖A‖Xk),

‖ −BT xk‖ ≤
O(τ)κ(B)

1− τκ(B)
‖B‖Xk,

Xk ≡ max{‖xi‖ | i = 0, 1, . . . , k}.

Back-substitution scheme α3

A: Generic update

yk+1 = yk + p
(y)
k

u

B: Direct substitution
yk+1 = B†(f −Axk+1)

τ

C: Corrected dir. subst.
yk+1 = yk + B†(f −Axk+1 −Byk)

u

}
additional least
square with B
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Limiting (maximum attainable) accuracy of segregated methods Forward error

Forward error of computed approximate solution

‖x− xk‖ ≤ γ1‖f −Axk −Byk‖+ γ2‖ −BT xk‖,

‖y − yk‖ ≤ γ2‖f −Axk −Byk‖+ γ3‖ −BT xk‖,

γ1 = σ−1
min(A), γ2 = σ−1

min(B), γ3 = σ−1
min(BT A−1B).
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Conclusions

Conclusions

All bounds of the limiting accuracy depend on the maximum norm of
computed iterates, cf. [Greenbaum, 1997].

The accuracy measured by the residuals of the saddle point problem
depends on the choice of the back-substitution scheme [J, R, 2006].

Care must be taken when solving nonsymmetric systems [J, R, 2007].
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The residuals in the outer iteration process and the forward errors of
computed approximations are proportional to the backward error in
solution of inner systems,
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Thank you for your attention.

http://www.cs.cas.cz/∼miro
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P. Jiránek and M. Rozložńık. Limiting accuracy of segregated solution methods
for nonsymmetric saddle point problems. 2007. To appear in J. Comp. Appl.
Math.
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