On the limiting accuracy of segregated saddle point solvers

Pavel Jiránek^{1,2}, Miroslav Rozložník^{1,2}

Faculty of Mechatronics and Interdisciplinary Engineering Studies, Technical University of Liberec, Czech Republic¹

and

Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic 2

VIII. vedecká konferencia, TU Košice, 28.-30. 5. 2007

Outline

Introduction

- Saddle point problems
- Segregated solution methods for solving saddle point systems
- Iterative solution of reduced systems

Limiting (maximum attainable) accuracy of segregated methods

- Accuracy in the outer iteration process
- Accuracy in the saddle point system
- Forward error

We consider a saddle point problem with the symmetric 2×2 block form

$$\begin{pmatrix} A & B \\ B^T & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} f \\ 0 \end{pmatrix}.$$

- A is a square $n \times n$ nonsingular (symmetric positive definite) matrix,
- B is a rectangular $n \times m$ matrix of (full column) rank m.

Applications: mixed finite element approximations, weighted least squares, constrained optimization etc. [Benzi, Golub, and Liesen, 2005].

Segregated solution methods

Schur complement reduction method:

• compute y as a solution of the Schur complement system

$$B^T A^{-1} B y = B^T A^{-1} f,$$

compute x as a solution of

$$Ax = f - By.$$

O Null-space projection method:

• compute $x \in N(B^T)$ as a solution of the projected system

$$(I - \Pi)A(I - \Pi)x = (I - \Pi)f,$$

• compute y as a solution of the least squares problem

$$By \approx f - Ax$$
,

 Π is the orthogonal projector onto R(B).

Iterative solution of the Schur complement system

$$\begin{array}{c} \text{choose } y_0, \ \text{solve } Ax_0 = f - By_0 \\ \text{compute } \alpha_k \ \text{and } p_k^{(y)} \\ y_{k+1} = y_k + \alpha_k p_k^{(y)} \\ \text{solve } Ap_k^{(x)} = -Bp_k^{(y)} \\ \text{back-substitution:} \\ \textbf{A: } x_{k+1} = x_k + \alpha_k p_k^{(x)}, \\ \textbf{B: solve } Ax_{k+1} = f - By_{k+1}, \\ \textbf{C: solve } Au_k = f - Ax_k - By_{k+1}, \\ x_{k+1} = x_k + u_k. \end{array} \right\} \text{ inner iteration }$$

Systems with A are solved inexactly, i.e. the computed solution \bar{u} of Au = b is an exact solution of a perturbed system

 $(A+\Delta A)\bar{u}=b+\Delta b, \ \|\Delta A\|\leq \tau \|A\|, \ \|\Delta b\|\leq \tau \|b\|, \ \tau \kappa(A)\ll 1.$

Iterative solution of the null-space projected system

$$\begin{array}{c} \text{choose } x_0, \ \text{solve } By_0 \approx f - Ax_0 \\ \text{compute } \alpha_k \ \text{and } p_k^{(x)} \in N(B^T) \\ x_{k+1} = x_k + \alpha_k p_k^{(x)} \\ \text{solve } Bp_k^{(y)} \approx r_k^{(x)} - \alpha_k Ap_k^{(x)} \\ \text{back-substitution:} \\ \textbf{A: } y_{k+1} = y_k + p_k^{(y)}, \\ \textbf{B: solve } By_{k+1} \approx f - Ax_{k+1}, \\ \textbf{C: solve } Bv_k \approx f - Ax_{k+1} - By_k, \\ y_{k+1} = y_k + v_k. \end{array} \right\} \text{ inner iteration }$$

The least squares with B are solved inexactly, i.e. the computed solution \bar{v} of $Bv \approx c$ is an exact solution of a perturbed least squares problem

 $(B + \Delta B)\bar{v} \approx c + \Delta c, \ \|\Delta B\| \leq \tau \|B\|, \ \|\Delta c\| \leq \tau \|c\|, \ \tau \kappa(B) \ll 1.$

Measure of the limiting accuracy

The limiting (maximum attainable) accuracy is measured by the ultimate (asymptotic) values of:

- the residuals in the outer iteration process:
 - the Schur complement residual $B^T A^{-1} f B^T A^{-1} B y_k$,
 - the residual $(I \Pi)f (I \Pi)A(I \Pi)x_k$ in the projected system;

(a) the residuals in the saddle point system: $f - Ax_k - By_k$ and $-B^T x_k$;

() the forward errors: $x - x_k$ and $y - y_k$.

Our results are illustrated on a simple numerical experiment:

$$A = \operatorname{tridiag}(1, 4, 1) \in \mathbb{R}^{100 \times 100}, \ B = \operatorname{rand}(100, 20), \ f = \operatorname{rand}(100, 1),$$
$$\kappa(A) = \|A\| \cdot \|A^{-1}\| = 7.1695 \cdot 0.4603 \approx 3.3001,$$
$$\kappa(B) = \|B\| \cdot \|B^{\dagger}\| = 5.9990 \cdot 0.4998 \approx 2.9983.$$

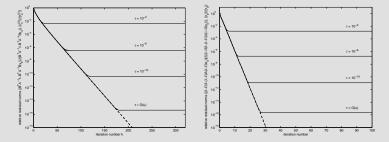
Accuracy in the outer iteration process

• The Schur complement reduction method:

$$\|-B^{T}A^{-1}f+B^{T}A^{-1}By_{k}-r_{k}^{(y)}\| \leq \frac{O(\tau)\kappa(A)}{1-\tau\kappa(A)}\|A^{-1}\|\|B\|(\|f\|+\|B\|Y_{k}).$$

The null-space projection method:

$$\|(I-\Pi)f - (I-\Pi)A(I-\Pi)x_k - (I-\Pi)r_k^{(x)}\| \le \frac{O(\tau)\kappa(B)}{1 - \tau\kappa(B)}(\|f\| + \|A\|X_k).$$



Accuracy in the saddle point system - Schur complement reduction

$$\|f - Ax_k - By_k\| \le \frac{O(\alpha_1)\kappa(A)}{1 - \tau\kappa(A)} (\|f\| + \|B\|Y_k), \| - B^T x_k - r_k^{(y)}\| \le \frac{O(\alpha_2)\kappa(A)}{1 - \tau\kappa(A)} \|A^{-1}\| \|B\| (\|f\| + \|B\|Y_k).$$

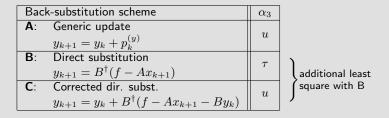
$$Y_k \equiv \max\{\|y_i\| \mid i = 0, 1, \dots, k\}.$$

Back-substitution scheme		α_1	α_2	
	Generic update $x_{k+1} = x_k + \alpha_k p_k^{(x)}$	τ	u	
B:	Direct substitution $x_{k+1} = A^{-1}(f - By_{k+1})$	au	τ	additional system with A
C:	Corrected dir. subst. $x_{k+1} = x_k + A^{-1}(f - Ax_k - By_{k+1})$	u	τ	

Accuracy in the saddle point system - null-space projection

$$\|f - Ax_k - By_k - r_k^{(x)}\| \le \frac{O(\alpha_3)\kappa(B)}{1 - \tau\kappa(B)} (\|f\| + \|A\|X_k) \\ \| - B^T x_k\| \le \frac{O(\tau)\kappa(B)}{1 - \tau\kappa(B)} \|B\|X_k,$$

$$X_k \equiv \max\{||x_i|| \mid i = 0, 1, \dots, k\}.$$



Forward error of computed approximate solution

150 200 250 iteration number k

$$||x - x_k|| \le \gamma_1 ||f - Ax_k - By_k|| + \gamma_2 || - B^T x_k||,$$

$$||y - y_k|| \le \gamma_2 ||f - Ax_k - By_k|| + \gamma_3 || - B^T x_k||,$$

$$\gamma_1 = \sigma_{min}^{-1}(A), \ \gamma_2 = \sigma_{min}^{-1}(B), \ \gamma_3 = \sigma_{min}^{-1}(B^T A^{-1} B).$$

50 50 iteration number k

100

10-1

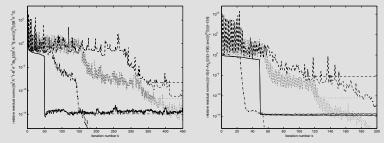
10

10⁻¹

Conclusions

Conclusions

- All bounds of the limiting accuracy depend on the maximum norm of computed iterates, cf. [Greenbaum, 1997].
- The accuracy measured by the residuals of the saddle point problem depends on the choice of the back-substitution scheme [J, R, 2006].
- Care must be taken when solving nonsymmetric systems [J, R, 2007].



 The residuals in the outer iteration process and the forward errors of computed approximations are proportional to the backward error in solution of inner systems,

Thank you for your attention.

http://www.cs.cas.cz/~miro

- M. Benzi, G. H. Golub, and J. Liesen. Numerical solution of saddle point problems. Acta Numerica, pages 1–137, 2005.
- A. Greenbaum. Estimating the attainable accuracy of recursively computed residual methods. *SIAM J. Matrix Anal. Appl.*, 18(3):535–551, 1997.
- P. Jiránek and M. Rozložník. Maximum attainable accuracy of inexact saddle point solvers. 2006. Submitted to SIAM J. Matrix Anal. Appl.
- P. Jiránek and M. Rozložník. Limiting accuracy of segregated solution methods for nonsymmetric saddle point problems. 2007. To appear in J. Comp. Appl. Math.