# A Tuned Preconditioner for Inexact Inverse Iteration

#### Alastair Spence

Department of Mathematical Sciences University of Bath, United Kingdom

> June 13, 2006 Prague

Joint work with: Melina Freitag (Bath) and Eero Vainikko (Tartu)



Alastair Spence

Inexact inverse iteration and tuned preconditioning

University of Bath

### Motivation

- Inexact Inverse Iteration
- 3 Krylov solvers
- Tuning the right-hand side
- 5 Tuning and Preconditioning
- 6 Symmetric Problems





Alastair Spence

### Outline

#### 1 Motivation

- 2 Inexact Inverse Iteration
- 3 Krylov solvers
- 4 Tuning the right-hand side
- 5 Tuning and Preconditioning
- Symmetric Problems





Alastair Spence

### Motivation

- $Ax = \lambda Mx$
- simple  $(\lambda_1, x_1)$ :  $Ax_1 = \lambda_1 M x_1$
- Large sparse nonsymmetric matrices
- Stability calculations for linearised N-S using Mixed FEM
- Hopf bifurcation:  $\lambda$  complex
- Jacobi-Davidson, Arnoldi,...
- Inverse Iteration with iterative solves for shifted linear systems
- (a)costs of system solves (b)theory for symmetric problems



### Outline

#### Motivation

- 2 Inexact Inverse Iteration
- 3 Krylov solvers
- 4 Tuning the right-hand side
- 5 Tuning and Preconditioning
- 6 Symmetric Problems





Alastair Spence

### Inexact inverse iteration (an inner-outer iteration)

• 
$$Ax = \lambda Mx$$
,  $(A - \sigma M)^{-1}Mx = \frac{1}{\lambda - \sigma}x$ 

• Fixed shift, 
$$x^{(0)}$$
,  $e^{H}x^{(0)} = 1$ 



for 
$$i = 1$$
 to ... do  
choose  $\tau^{(i)}$   
solve

$$||(A - \sigma M)y^{(i)} - Mx^{(i)}|| \le \tau^{(i)}$$

update eigenvector  $x^{(i+1)} = \frac{y^{(i)}}{c^H y^{(i)}}$ , update eigenval  $\lambda^{(i+1)} =$ Ray. Quot. e-value residual  $r^{(i+1)} = (A - \lambda^{(i+1)}M)x^{(i+1)}$ . end for



Alastair Spence

### PDE Example

Consider

$$-\Delta u + 5u_x + 5u_y = \lambda u$$

- Finite Difference Discretisation:  $A_1 x = \lambda x$
- Finite Element Discretisation:  $A_2 x = \lambda M_2 x$

Apply inexact inverse iteration with fixed shift  $\sigma$  and decreasing tolerance:

$$(A_1 - \sigma I)y^{(i)} = x^{(i)}, \quad (A_2 - \sigma M_2)y^{(i)} = M_2 x^{(i)}.$$



### PDE Example: Numerics

#### Inner v. outer iterations





#### Alastair Spence

### PDE Example: Numerics

#### Inner v. outer iterations





#### Alastair Spence

### Questions

#### For decreasing solve tolerances

- Since the linear systems are being solved more and more accurately, why isn't the # inner iterations increasing with *i* for  $A_1x = \lambda x$ ?
- Why is the inner iteration behaviour different for the two discretizations?
- Can we achieve no increase in # inner iterations for  $A_2x = \lambda M_2x$ ? (Yes: 'tuning')



### Questions

#### For decreasing solve tolerances

- Since the linear systems are being solved more and more accurately, why isn't the # inner iterations increasing with *i* for  $A_1x = \lambda x$ ?
- Why is the inner iteration behaviour different for the two discretizations?
- Can we achieve no increase in # inner iterations for  $A_2x = \lambda M_2x$ ? (Yes: 'tuning')
- What implications are there for preconditioned iterative solvers?
- What can we prove for the symmetric case?



### **Convergence** Analysis

 $Ax_1 = \lambda_1 x_1$ , A symmetric (see Parlett's book)



•  $C|\sin\theta^{(i)}| \le ||r^{(i)}|| \le C'|\sin\theta^{(i)}|$ ,  $r^{(i)} = (A - \lambda^{(i)}M)x^{(i)}$ 



Alastair Spence

### **Convergence** Analysis

 $Ax_1 = \lambda_1 x_1$ , A symmetric (see Parlett's book)



- $C|\sin\theta^{(i)}| \le ||r^{(i)}|| \le C'|\sin\theta^{(i)}|$ ,  $r^{(i)} = (A \lambda^{(i)}M)x^{(i)}$
- Nonsymmetric:  $Ax = \lambda Mx$  [Lai/Lin/Wen-Wei (1997); Golub/Ye (2000); Berns-Müller/Sp (2006)]
- If  $\tau^{(i)} = C \| r^{(i)} \|$  then LINEAR convergence



### Outline

#### Motivation

- 2 Inexact Inverse Iteration
- 3 Krylov solvers
  - 4 Tuning the right-hand side
- 5 Tuning and Preconditioning
- 6 Symmetric Problems





Alastair Spence

### Krylov solvers for By = b

- $B = (A \sigma I)$  and b = x
- later  $B = (A \sigma M)$  and b = Mx



### Krylov solvers for By = b

- $B = (A \sigma I)$  and b = x
- later  $B = (A \sigma M)$  and b = Mx
- $||b By_k|| = \min ||p_k(B)b|| \le C\rho^k ||b||, \quad (0 < \rho < 1).$



### Krylov solvers for By = b

• 
$$B = (A - \sigma I)$$
 and  $b = x$ 

- later  $B = (A \sigma M)$  and b = Mx
- $\|b By_k\| = \min \|p_k(B)b\| \le C\rho^k \|b\|, \quad (0 < \rho < 1).$

• If 
$$\|b - B\boldsymbol{y_k}\| \leq \tau$$
 then

$$k \ge C_1 + C_2 \log \frac{\|b\|}{\tau}$$

• Bound on k increases as  $\tau$  decreases



Inexact inverse iteration and tuned preconditioning

Alastair Spence

### Krylov solvers for By = b: sophisticated analysis

- for a well-separated eigenvalue
- For  $B = (A \sigma I)$  then  $Bx_1 = (\lambda_1 \sigma)x_1$

۲

 $||b - By_k|| = \min ||p_k(B)b|| \le ||p_{k-1}(B)q_1(B)b||$ 



Alastair Spence

### Krylov solvers for By = b: sophisticated analysis

- for a well-separated eigenvalue
- For  $B = (A \sigma I)$  then  $Bx_1 = (\lambda_1 \sigma)x_1$

$$||b - B\mathbf{y}_k|| = \min ||p_k(B)b|| \le ||p_{k-1}(B)\mathbf{q}_1(B)b||$$

۲

$$||b - By_k|| \le ||p_{k-1}(B)q_1(B)Qb||$$



### Krylov solvers for By = b: sophisticated analysis

- for a well-separated eigenvalue
- For  $B = (A \sigma I)$  then  $Bx_1 = (\lambda_1 \sigma)x_1$

$$||b - B\mathbf{y}_k|| = \min ||p_k(B)b|| \le ||p_{k-1}(B)\mathbf{q}_1(B)b||$$

$$||b - By_k|| \le ||p_{k-1}(B)q_1(B)Qb|$$

• to achieve 
$$\|b - By_k\| \leq \tau$$
 then

$$k \ge C_3 + C_4 \log \frac{\|Qb\|}{\tau}$$

• Bound on k depends on  $\frac{\|Qb\|}{\tau}$ 



Alastair Spence

۲

۲

# Some answers for $\tau^{(i)} = C ||r^{(i)}|| = O(\sin \theta^{(i)})$

### $(A - \sigma I)y^{(i)} = x^{(i)}$

• 
$$b = x^{(i)}$$
 and  $||Qx^{(i)}|| = \mathcal{O}(\sin \theta^{(i)})$ 

- Hence  $\|Qb\|/\tau = \mathcal{O}(1)$  and the bound on k doesn't increase
- Consistent with numerics for  $A_1 x = \lambda x$



# Some answers for $\tau^{(i)} = C ||r^{(i)}|| = O(\sin \theta^{(i)})$

### $(A - \sigma I)y^{(i)} = x^{(i)}$

- $b = x^{(i)}$  and  $\|Qx^{(i)}\| = \mathcal{O}(\sin \theta^{(i)})$
- Hence  $\|Qb\|/\tau = \mathcal{O}(1)$  and the bound on k doesn't increase
- Consistent with numerics for  $A_1 x = \lambda x$

### $\overline{(A - \sigma M)y^{(i)}} = Mx^{(i)}$

- $b = Mx^{(i)}$  and  $\|QMx^{(i)}\| = \mathcal{O}(1)$
- Hence  $\|Qb\|/\tau = \mathcal{O}(\sin \theta^{(i)})^{-1}$  and the bound on k increases
- Consistent with numerics for  $A_2 x = \lambda M_2 x$



Alastair Spence

### Outline

#### Motivation

- Inexact Inverse Iteration
- 3 Krylov solvers
- 4 Tuning the right-hand side
- 5 Tuning and Preconditioning
- 6 Symmetric Problems





Alastair Spence

For 
$$(A - \sigma M)y^{(i)} = Mx^{(i)}$$

Introduce the "tuning matrix"  $\mathbb{T}$  and consider (think preconditioning)

$$\mathbb{T}^{-1}(A - \sigma M)y^{(i)} = \mathbb{T}^{-1}Mx^{(i)}$$



Alastair Spence

For 
$$(A - \sigma M)y^{(i)} = Mx^{(i)}$$

Introduce the "tuning matrix"  $\mathbb{T}$  and consider (think preconditioning)

$$\mathbb{T}^{-1}(A - \sigma M)y^{(i)} = \mathbb{T}^{-1}Mx^{(i)}$$

• Key Condition: 
$$\mathbb{T}^{-1}Mx^{(i)} = x^{(i)}$$



Alastair Spence Inexact inverse iteration and tuned preconditioning University of Bath

For 
$$(A - \sigma M)y^{(i)} = Mx^{(i)}$$

Introduce the "tuning matrix"  $\mathbb{T}$  and consider (think preconditioning)

$$\mathbb{T}^{-1}(A - \sigma M)y^{(i)} = \mathbb{T}^{-1}Mx^{(i)}$$

- Key Condition:  $\mathbb{T}^{-1}Mx^{(i)} = x^{(i)}$
- Re-arrange to:

$$Mx^{(i)} = \mathbb{T}x^{(i)}$$

• Implement by rank-one change to Identity:

$$\mathbb{T} := I + (Mx^{(i)} - x^{(i)})\mathbf{c}^H \quad (\mathbf{c}^H x^{(i)} = 1)$$

So

$$\mathbb{T}x^{(i)} = x^{(i)} + (Mx^{(i)} - x^{(i)})\mathbf{c}^H x^{(i)} = Mx^{(i)}$$

 $\bullet$  Use Sherman-Morrison to get action of  $\mathbb{T}^{-1}$ 



University of Bath

### PDE Example: Numerics

#### Inner v. outer iterations





#### Alastair Spence

### PDE Example: Numerics

#### Inner v. outer iterations





University of Bath

#### Inexact inverse iteration and tuned preconditioning

Alastair Spence

### Outline

### Motivation

- 2 Inexact Inverse Iteration
- 3 Krylov solvers
- 4 Tuning the right-hand side
- 5 Tuning and Preconditioning
- 6 Symmetric Problems





Alastair Spence

### Flow past a circular cylinder (incompressible Navier-Stokes)

- Re = 25,  $\lambda \approx \pm 10i$
- Mixed FEM:  $Q_2 Q_1$  elements
- Elman preconditioner: 2-level additive Schwarz
- $\approx 54000$  degrees of freedom



### Flow past a circular cylinder (incompressible Navier-Stokes)

#### Figure: Fixed Shift

#### Figure: Rayleigh Quotient Shift





University of Bath

Alastair Spence

- Preconditioned iterates should behave as in unpreconditioned standard EVP case
- right preconditioned system  $(A \sigma M)P_S^{-1}\tilde{y}^{(i)} = Mx^{(i)}$
- theory of Krylov solver for By = b indicates that  $Mx^{(i)}$  should be close to eigenvector of  $(A \sigma M)P_S^{-1}$



- Preconditioned iterates should behave as in unpreconditioned standard EVP case
- right preconditioned system  $(A \sigma M)P_S^{-1}\tilde{y}^{(i)} = Mx^{(i)}$
- theory of Krylov solver for By = b indicates that  $Mx^{(i)}$  should be close to eigenvector of  $(A \sigma M)P_S^{-1}$
- $\bullet\,$  Introduce a tuned preconditioner  $\mathbb P$  so that we solve

$$(A - \sigma M)\mathbb{P}^{-1}\tilde{y}^{(i)} = Mx^{(i)}$$



- Preconditioned iterates should behave as in unpreconditioned standard EVP case
- right preconditioned system  $(A \sigma M)P_S^{-1}\tilde{y}^{(i)} = Mx^{(i)}$
- theory of Krylov solver for By = b indicates that  $Mx^{(i)}$  should be close to eigenvector of  $(A \sigma M)P_S^{-1}$
- $\bullet\,$  Introduce a tuned preconditioner  $\mathbb P$  so that we solve

$$(A - \sigma M)\mathbb{P}^{-1}\tilde{y}^{(i)} = Mx^{(i)}$$

- Remember  $Ax_1 = \lambda_1 M x_1$ , so condition  $\mathbb{P}x^{(i)} \approx \lambda^{(i)} M x^{(i)}$  ?
- Take

$$\mathbb{P}x^{(i)} = Ax^{(i)}$$

since then

$$\mathbb{P}x^{(i)} = \lambda^{(i)}Mx^{(i)} + (Ax^{(i)} - \lambda^{(i)}Mx^{(i)})$$



University of Bath

# Implementation of $\mathbb{P}x^{(i)} = Ax^{(i)}$

- Given  $P_S$
- Evaluate  $u^{(i)} = Ax^{(i)} P_S x^{(i)}$



Alastair Spence

# Implementation of $\mathbb{P}x^{(i)} = Ax^{(i)}$

• Given  $P_S$ 

• Evaluate 
$$u^{(i)} = Ax^{(i)} - P_S x^{(i)}$$

• Rank-one update:

$$\mathbb{P} = P_S + u^{(i)} \mathbf{c}^H$$

$$\mathbb{P}x^{(i)} = P_S x^{(i)} + u^{(i)} \mathbf{c}^H x^{(i)} = P_S x^{(i)} + u^{(i)} = A x^{(i)}$$

• Use Sherman-Morrison - one extra backsolve per outer iteration



### Example

#### Figure: Fixed Shift

#### Figure: Rayleigh Quotient Shift





Alastair Spence

### Outline

#### Motivation

- 2 Inexact Inverse Iteration
- 3 Krylov solvers
- 4 Tuning the right-hand side
- 5 Tuning and Preconditioning
- 6 Symmetric Problems





Alastair Spence

### Convergence rates: symmetric problems - variable shifts

Decreasing tolerance  $\tau^{(i)} = C ||r^{(i)}|| = \mathcal{O}(\sin \theta^{(i)})$ 

• Rayleigh quotient shift  $\sigma^{(i)} = \rho(x^{(i)}) = \frac{x^{(i)T}Ax^{(i)}}{x^{(i)T}x^{(i)}}$ : cubic convergence

#### Fixed tolerance $\tau^{(i)} = \tau$

- convergence still possible
- Rayleigh quotient shift: quadratic convergence



Alastair Spence

### Unpreconditioned MINRES $(A - \sigma I)y = x$

### Number of inner solves for each i for $\|x^{(i)} - (A - \sigma^{(i)}I)y^{(i)}\| \leq \tau^{(i)}$

$$k \ge C_1 + C_2 \log \frac{\|\mathcal{Q}x^{(i)}\|_2}{|\lambda_1 - \sigma^{(i)}|\tau^{(i)}|}$$

2 Interplay between the shift, solve tolerance and right hand side



Alastair Spence Inexact inverse iteration and tuned preconditioning

### Preconditioning

#### Incomplete Cholesky preconditioning

$$A = LL^T + E$$

symmetric preconditioning of  $(A - \sigma I)y^{(i)} = x^{(i)}$ :

$$L^{-1}(A - \sigma I)L^{-T}\tilde{y}^{(i)} = L^{-1}x^{(i)}, \quad y^{(i)} = L^{-T}\tilde{y}^{(i)}$$



### Preconditioning

#### Incomplete Cholesky preconditioning

$$A = LL^T + E$$

symmetric preconditioning of  $(A - \sigma I)y^{(i)} = x^{(i)}$ :

$$L^{-1}(A - \sigma I)L^{-T}\tilde{y}^{(i)} = L^{-1}x^{(i)}, \quad y^{(i)} = L^{-T}\tilde{y}^{(i)}$$

#### Remarks

- $L^{-1}x^{(i)}$  is not a "good" rhs for  $L^{-1}(A \sigma I)L^{-T}$
- **2** k increases with i for  $\tau^{(i)} = C \|r^{(i)}\|$  even for fixed shift.



Alastair Spence

#### $I modify \ L \to \mathbb{L}$

$$\mathbb{L}^{-1}(A - \sigma I)\mathbb{L}^{-T}\tilde{y}^{(i)} = \mathbb{L}^{-1}x^{(i)}, \quad y^{(i)} = \mathbb{L}^{-T}\tilde{y}^{(i)}$$



Alastair Spence

• modify  $L \to \mathbb{L}$ 

$$\mathbb{L}^{-1}(A - \sigma I)\mathbb{L}^{-T}\tilde{y}^{(i)} = \mathbb{L}^{-1}x^{(i)}, \quad y^{(i)} = \mathbb{L}^{-T}\tilde{y}^{(i)}$$

**2** minor extra computation cost for  $\mathbb{L}$ 

 ${f 3}$  "nice" right hand side  ${\Bbb L}^{-1} x^{(i)}$ 



modify L → L L<sup>-1</sup>(A − σI)L<sup>-T</sup> ỹ<sup>(i)</sup> = L<sup>-1</sup>x<sup>(i)</sup>, y<sup>(i)</sup> = L<sup>-T</sup> ỹ<sup>(i)</sup>

minor extra computation cost for L

"nice" right hand side L<sup>-1</sup>x<sup>(i)</sup>

Ask that





**1** modify  $L \to \mathbb{L}$  $\mathbb{L}^{-1}(A - \sigma I)\mathbb{L}^{-T}\tilde{y}^{(i)} = \mathbb{L}^{-1}x^{(i)}, \quad y^{(i)} = \mathbb{L}^{-T}\tilde{y}^{(i)}$ 2 minor extra computation cost for  $\mathbb{L}$ 3 "nice" right hand side  $\mathbb{L}^{-1}x^{(i)}$ Ask that  $\mathbb{L}\mathbb{L}^T r^{(i)} = A r^{(i)}$ 5  $\mathbb{L}^{-1}(A - \sigma I)\mathbb{L}^{-T}\mathbb{L}^{-1}x^{(i)} = \frac{\lambda_1 - \sigma}{\lambda_1}\mathbb{L}^{-1}x^{(i)} + C\|r^{(i)}\|$ 



University of Bath

Alastair Spence

## How do we achieve $\mathbb{LL}^T x^{(i)} = A x^{(i)}$ ?

• 
$$x^{(i)}$$
 is current eigenvector approximation

2 
$$u^{(i)} = Ax^{(i)} - LL^T x^{(i)}$$
 (known)

 ${\small 3}$   ${\small \mathbb L}$  chosen such that

$$\mathbb{L} = L + \alpha^{(i)} u^{(i)} (L^{-1} u^{(i)})^T$$

with  $\alpha^{(i)}$  root of quadratic function



## How do we achieve $\mathbb{LL}^T x^{(i)} = A x^{(i)}$ ?

$$ullet$$
  $x^{(i)}$  is current eigenvector approximation

2 
$$u^{(i)} = Ax^{(i)} - LL^T x^{(i)}$$
 (known)

 ${\small 3}$   ${\small \mathbb L}$  chosen such that

$$\mathbb{L} = L + \alpha^{(i)} u^{(i)} (L^{-1} u^{(i)})^T$$

with  $\alpha^{(i)}$  root of quadratic function

• Note: 
$$\mathbb{LL}^T = LL^T + \frac{1}{e^{(i)^T} x^{(i)}} u^{(i)} u^{(i)^T}$$

**(2)**  $\mathbb{L}$  is a rank-one update of L, and  $\mathbb{LL}^T$  is a rank-one update of  $LL^T$ .



University of Bath

Alastair Spence

### Example

- SPD matrix from the Matrix Market library (nos5: 3 story building with attached tower)
- seek eigenvalue near fixed shift  $\sigma=100$
- $A \approx LL^T$ , incomplete Cholesky factorisation (drop tol. = 0.1)
- compare standard and tuned preconditioner



### Fixed shift solves



- total number of inner iterations using standard preconditioner: 2026
- total number of inner iterations using tuned preconditioner: 779



Alastair Spence

### Outline

#### Motivation

- 2 Inexact Inverse Iteration
- 3 Krylov solvers
- 4 Tuning the right-hand side
- 5 Tuning and Preconditioning
- 6 Symmetric Problems





#### Spectral properties of preconditioned matrix

#### Let

$$L^{-1}(A - \sigma I)L^{-T}w = \mu w$$
$$\mathbb{L}^{-1}(A - \sigma I)\mathbb{L}^{-T}\hat{w} = \xi \hat{w}$$

#### Theorem - no (i)

If  $\sigma \notin \Lambda(A)$  then  $\mu, \xi \neq 0$  and

$$\min_{\mu \in \Lambda(L^{-1}(A-\sigma I)L^{-T})} \left| \frac{\mu - \xi}{\xi} \right| \le |\gamma v^T v|,$$

where  $\gamma = 1/(u^T x)$  and  $v = L^{-1}u$ .



#### Alastair Spence

Spectral properties of preconditioned matrix

Let

$$L^{-1}(A - \sigma I)L^{-T}w = \mu w$$
$$\mathbb{L}^{-1}(A - \sigma I)\mathbb{L}^{-T}\hat{w} = \xi\hat{w}$$

#### Interlacing property (Golub/Van Loan)

Compare

$$Ds = \mu s$$

with

$$Dt = \xi (I + \gamma z z^T) t$$



Alastair Spence

Spectral properties of preconditioned matrix

$$L^{-1}(A - \sigma I)L^{-T}w = \mu w$$
$$\mathbb{L}^{-1}(A - \sigma I)\mathbb{L}^{-T}\hat{w} = \xi\hat{w}$$

#### Interlacing property (Golub/Van Loan)

Compare

$$Ds = \mu s$$

with

$$Dt = \xi (I + \gamma z z^T) t$$

#### Interlacing property

- If  $\gamma > 0$  eigenvalues are moved towards the origin.
- If  $\gamma < 0$  eigenvalues are moved away from the origin.



Alastair Spence

#### Rank-one perturbation of a symmetric matrix





Alastair Spence

#### Rank-one perturbation of a symmetric matrix





Alastair Spence

#### Interlacing property



- $\mu$  and  $\xi$  interlace each other depending on the sign of  $\gamma$
- Clustering properties are preserved
- reduced condition number  $\kappa_L^1 \leq \kappa_L^1 \leq \kappa_L^1 (1 + \gamma v^T v)$



Inexact inverse iteration and tuned preconditioning

Alastair Spence

### Another approach: Changing the right hand side

#### Approach by Simoncini/Eldén

Instead of solving

$$L^{-1}(A - \sigma^{(i)}I)L^{-T}\tilde{y}^{(i)} = L^{-1}x^{(i)}, \quad y^{(i)} = \mathbb{L}^{-T}\tilde{y}^{(i)}$$

change the right hand side

$$L^{-1}(A - \sigma^{(i)}I)L^{-T}\tilde{y}^{(i)} = L^{T}x^{(i)}, \quad y^{(i)} = L^{-T}\tilde{y}^{(i)}$$



Alastair Spence

### Comparison

#### Tuned preconditioner and Simoncini & Eldén approach

Example nos5.mtx from Matrix Market. Solves to fixed tolerance  $\tau = 0.01$ . Rayleigh quotient shift. Quadratic convergence for both methods.

|                 | Simoncini & Eldén |     | Tuned preconditioner |     |
|-----------------|-------------------|-----|----------------------|-----|
|                 | Drop Tolerances   |     |                      |     |
| OUTER ITERATION | 0.25              | 0.1 | 0.25                 | 0.1 |
| 1               | 67                | 62  | 29                   | 26  |
| 2               | 74                | 66  | 56                   | 55  |
| 3               | 85                | 75  | 71                   | 67  |
| 4               | 63                |     | 18                   |     |
| total           | 289               | 203 | 174                  | 148 |



Alastair Spence

### Conclusion

• When preconditioning an eigenvalue problem think of adding the property

$$\mathbb{P}x^{(i)} = Ax^{(i)}$$

to your favourite preconditioner

• This can be achieved by a simple and cheap rank one modification



### Comparison Simoncini/Eldén with tuning

#### Standard method





Alastair Spence

### Comparison Simoncini/Eldén with tuning

#### tuning





Alastair Spence

## Comparison Simoncini/Eldén with tuning

#### Simoncini/Eldén





Alastair Spence

M. A. FREITAG AND A. SPENCE, Convergence rates for inexact inverse iteration with application to preconditioned iterative solves, 2006.

Submitted to BIT.

 A tuned preconditioner for inexact inverse iteration applied to Hermitian eigenvalue problems, 2006.
 Submitted to IMA J. Numer. Anal.

