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Motivation

Ax = λMx

simple (λ1, x1): Ax1 = λ1Mx1

Large sparse nonsymmetric matrices

Stability calculations for linearised N-S using Mixed FEM

Hopf bifurcation: λ complex

Jacobi-Davidson, Arnoldi,...

Inverse Iteration with iterative solves for shifted linear systems

(a)costs of system solves (b)theory for symmetric problems
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Inexact inverse iteration (an inner-outer iteration)

Ax = λMx, (A− σM)−1Mx = 1
λ−σ x

Fixed shift, x(0), cHx(0) = 1

for i = 1 to . . . do
choose τ (i)

solve
‖(A− σM)y(i) −Mx(i)‖ ≤ τ (i),

update eigenvector x(i+1) =
y(i)

cHy(i)
,

update eigenval λ(i+1) =Ray. Quot.
e-value residual r(i+1) = (A− λ(i+1)M)x(i+1).

end for
Alastair Spence University of Bath
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PDE Example

Consider
−∆u + 5ux + 5uy = λu

Finite Difference Discretisation: A1x = λx

Finite Element Discretisation: A2x = λM2x

Apply inexact inverse iteration with fixed shift σ and decreasing tolerance:

(A1 − σI)y(i) = x(i), (A2 − σM2)y(i) = M2x
(i).

Alastair Spence University of Bath
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PDE Example: Numerics

Inner v. outer iterations
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Questions

For decreasing solve tolerances

Since the linear systems are being solved more and more accurately,
why isn’t the # inner iterations increasing with i for A1x = λx?

Why is the inner iteration behaviour different for the two
discretizations?

Can we achieve no increase in # inner iterations for A2x = λM2x?
(Yes: ‘tuning’)

What implications are there for preconditioned iterative solvers?

What can we prove for the symmetric case?

Alastair Spence University of Bath
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Convergence Analysis

Ax1 = λ1x1, A symmetric (see Parlett’s book)

C| sin θ(i)| ≤ ‖r(i)‖ ≤ C ′| sin θ(i)|, r(i) = (A− λ(i)M)x(i)

Nonsymmetric: Ax = λMx [Lai/Lin/Wen-Wei (1997);
Golub/Ye (2000); Berns-Müller/Sp (2006)]

If τ (i) = C‖r(i)‖ then LINEAR convergence

Alastair Spence University of Bath
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Krylov solvers for By = b

B = (A− σI) and b = x

later B = (A− σM) and b = Mx

‖b−Byk‖ = min‖pk(B)b‖ ≤ Cρk‖b‖, (0 < ρ < 1).
If ‖b−Byk‖ ≤ τ then

k ≥ C1 + C2 log
‖b‖
τ

Bound on k increases as τ decreases

Alastair Spence University of Bath
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Krylov solvers for By = b: sophisticated analysis

for a well-separated eigenvalue

For B = (A− σI) then Bx1 = (λ1 − σ)x1

‖b−Byk‖ = min‖pk(B)b‖ ≤ ‖pk−1(B)q1(B)b‖

‖b−Byk‖ ≤ ‖pk−1(B)q1(B)Qb‖

to achieve ‖b−Byk‖ ≤ τ then

k ≥ C3 + C4 log
‖Qb‖

τ

Bound on k depends on ‖Qb‖
τ

Alastair Spence University of Bath
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Some answers for τ (i) = C‖r(i)‖ = O(sin θ(i))

(A− σI)y(i) = x(i)

b = x(i) and ‖Qx(i)‖ = O(sin θ(i))
Hence ‖Qb‖/τ = O(1) and the bound on k doesn’t increase

Consistent with numerics for A1x = λx

Alastair Spence University of Bath
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Some answers for τ (i) = C‖r(i)‖ = O(sin θ(i))

(A− σI)y(i) = x(i)

b = x(i) and ‖Qx(i)‖ = O(sin θ(i))
Hence ‖Qb‖/τ = O(1) and the bound on k doesn’t increase

Consistent with numerics for A1x = λx

(A− σM)y(i) = Mx(i)

b = Mx(i) and ‖QMx(i)‖ = O(1)
Hence ‖Qb‖/τ = O(sin θ(i))−1 and the bound on k increases

Consistent with numerics for A2x = λM2x
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For (A− σM)y(i) = Mx(i)

Introduce the “tuning matrix” T and consider (think preconditioning)

T−1(A− σM)y(i) = T−1Mx(i)

Key Condition: T−1Mx(i) = x(i)

Re-arrange to:
Mx(i) = Tx(i)

Implement by rank-one change to Identity:

T := I + (Mx(i) − x(i))cH (cHx(i) = 1)

So
Tx(i) = x(i) + (Mx(i) − x(i))cHx(i) = Mx(i)

Use Sherman-Morrison to get action of T−1

Alastair Spence University of Bath
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PDE Example: Numerics

Inner v. outer iterations
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Flow past a circular cylinder (incompressible Navier-Stokes)

Re = 25, λ ≈ ±10i

Mixed FEM: Q2 −Q1 elements

Elman preconditioner: 2-level additive Schwarz

≈ 54000 degrees of freedom

Alastair Spence University of Bath
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Flow past a circular cylinder (incompressible Navier-Stokes)

Figure: Fixed Shift Figure: Rayleigh Quotient Shift

Alastair Spence University of Bath
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Tuning the preconditioner

Preconditioned iterates should behave as in unpreconditioned
standard EVP case

right preconditioned system (A− σM)P−1
S ỹ(i) = Mx(i)

theory of Krylov solver for By = b indicates that Mx(i) should be
close to eigenvector of (A− σM)P−1

S

Introduce a tuned preconditioner P so that we solve

(A− σM)P−1ỹ(i) = Mx(i)

Remember Ax1 = λ1Mx1, so condition Px(i) ≈ λ(i)Mx(i) ?

Take
Px(i) = Ax(i)

since then

Px(i) = λ(i)Mx(i) + (Ax(i) − λ(i)Mx(i))

Alastair Spence University of Bath
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Implementation of Px(i) = Ax(i)

Given PS

Evaluate u(i) = Ax(i) − PSx(i)

Rank-one update: P = PS + u(i)cH

Px(i) = PSx(i) + u(i)cHx(i) = PSx(i) + u(i) = Ax(i)

Use Sherman-Morrison - one extra backsolve per outer iteration

Alastair Spence University of Bath
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Example

Figure: Fixed Shift Figure: Rayleigh Quotient Shift

Alastair Spence University of Bath
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Convergence rates: symmetric problems - variable shifts

Decreasing tolerance τ (i) = C‖r(i)‖ = O(sin θ(i))

1 Rayleigh quotient shift σ(i) = ρ(x(i)) =
x(i)T

Ax(i)

x(i)T
x(i)

: cubic

convergence

Fixed tolerance τ (i) = τ

1 convergence still possible

2 Rayleigh quotient shift: quadratic convergence

Alastair Spence University of Bath

Inexact inverse iteration and tuned preconditioning



Outline Motivation Inexact Inverse Iteration Krylov solvers Tuning the right-hand side Tuning and Preconditioning Symmetric Problems Theory

Unpreconditioned MINRES (A− σI)y = x

Number of inner solves for each i for ‖x(i) − (A− σ(i)I)y(i)‖ ≤ τ (i)

1

k ≥ C1 + C2 log
‖Qx(i)‖2

|λ1 − σ(i)|τ (i)

2 Interplay between the shift, solve tolerance and right hand side

Alastair Spence University of Bath
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Preconditioning

Incomplete Cholesky preconditioning

A = LLT + E

symmetric preconditioning of (A− σI)y(i) = x(i):

L−1(A− σI)L−T ỹ(i) = L−1x(i), y(i) = L−T ỹ(i)

Remarks

1 L−1x(i) is not a “good” rhs for L−1(A− σI)L−T

2 k increases with i for τ (i) = C‖r(i)‖ even for fixed shift.

Alastair Spence University of Bath
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Tuning the Preconditioner

1 modify L → L

L−1(A− σI)L−T ỹ(i) = L−1x(i), y(i) = L−T ỹ(i)

2 minor extra computation cost for L
3 ”nice” right hand side L−1x(i)

4 Ask that
LLT x(i) = Ax(i)

5

L−1(A− σI)L−T L−1x(i) =
λ1 − σ

λ1
L−1x(i) + C‖r(i)‖

Alastair Spence University of Bath

Inexact inverse iteration and tuned preconditioning



Outline Motivation Inexact Inverse Iteration Krylov solvers Tuning the right-hand side Tuning and Preconditioning Symmetric Problems Theory

Tuning the Preconditioner

1 modify L → L
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How do we achieve LLTx(i) = Ax(i)?

1 x(i) is current eigenvector approximation

2 u(i) = Ax(i) − LLT x(i) (known)

3 L chosen such that

L = L + α(i)u(i)(L−1u(i))T

with α(i) root of quadratic function

4 LLT x(i) = Ax(i).

5 Note: LLT = LLT +
1

e(i)T
x(i)

u(i)u(i)T

6 L is a rank-one update of L, and LLT is a rank-one update of LLT .

Alastair Spence University of Bath
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Alastair Spence University of Bath
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Example

SPD matrix from the Matrix Market library (nos5: 3 story building
with attached tower)

seek eigenvalue near fixed shift σ = 100
A ≈ LLT , incomplete Cholesky factorisation (drop tol. = 0.1)

compare standard and tuned preconditioner

Alastair Spence University of Bath
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Fixed shift solves

Preconditioning with standard incomplete Cholesky

total number of inner iterations using standard preconditioner: 2026

total number of inner iterations using tuned preconditioner: 779

Alastair Spence University of Bath
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Comparison of LLT with LLT

Spectral properties of preconditioned matrix

Let
L−1(A− σI)L−T w = µw

L−1(A− σI)L−T ŵ = ξŵ

Theorem - no (i)

If σ /∈ Λ(A) then µ, ξ 6= 0 and

min
µ∈Λ(L−1(A−σI)L−T )

∣∣∣∣µ− ξ

ξ

∣∣∣∣ ≤ |γvT v|,

where γ = 1/(uT x) and v = L−1u.

Alastair Spence University of Bath
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Comparison of LLT with LLT

Spectral properties of preconditioned matrix

Let
L−1(A− σI)L−T w = µw

L−1(A− σI)L−T ŵ = ξŵ

Interlacing property (Golub/Van Loan)

Compare
Ds = µs

with
Dt = ξ(I + γzzT )t

Interlacing property

If γ > 0 eigenvalues are moved towards the origin.

If γ < 0 eigenvalues are moved away from the origin.

Alastair Spence University of Bath
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Comparison of LLT with LLT

Spectral properties of preconditioned matrix

Let
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L−1(A− σI)L−T ŵ = ξŵ

Interlacing property (Golub/Van Loan)

Compare
Ds = µs

with
Dt = ξ(I + γzzT )t

Interlacing property
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Comparison of LLT with LLT

Rank-one perturbation of a symmetric matrix
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Comparison of LLT with LLT

Rank-one perturbation of a symmetric matrix
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Comparison of LLT with LLT

Interlacing property

µ and ξ interlace each other depending on the sign of γ

Clustering properties are preserved

reduced condition number κ1
L ≤ κ1

L ≤ κ1
L(1 + γvT v)

Alastair Spence University of Bath
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Another approach: Changing the right hand side

Approach by Simoncini/Eldén

Instead of solving

L−1(A− σ(i)I)L−T ỹ(i) = L−1x(i), y(i) = L−T ỹ(i)

change the right hand side

L−1(A− σ(i)I)L−T ỹ(i) = LT x(i), y(i) = L−T ỹ(i)

Alastair Spence University of Bath
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Comparison

Tuned preconditioner and Simoncini & Eldén approach

Example nos5.mtx from Matrix Market. Solves to fixed tolerance
τ = 0.01. Rayleigh quotient shift. Quadratic convergence for both
methods.

Simoncini & Eldén Tuned preconditioner
Drop Tolerances

Outer Iteration 0.25 0.1 0.25 0.1
1 67 62 29 26
2 74 66 56 55
3 85 75 71 67
4 63 18

total 289 203 174 148

Alastair Spence University of Bath
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Conclusion

When preconditioning an eigenvalue problem think of adding the
property

Px(i) = Ax(i)

to your favourite preconditioner

This can be achieved by a simple and cheap rank one modification

Alastair Spence University of Bath
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Comparison Simoncini/Eldén with tuning

Standard method
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Comparison Simoncini/Eldén with tuning

tuning
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Comparison Simoncini/Eldén with tuning

Simoncini/Eldén

Alastair Spence University of Bath

Inexact inverse iteration and tuned preconditioning



Outline Motivation Inexact Inverse Iteration Krylov solvers Tuning the right-hand side Tuning and Preconditioning Symmetric Problems Theory

M. A. Freitag and A. Spence, Convergence rates for inexact
inverse iteration with application to preconditioned iterative solves,
2006.
Submitted to BIT.

, A tuned preconditioner for inexact inverse iteration applied to
Hermitian eigenvalue problems, 2006.
Submitted to IMA J. Numer. Anal.

Alastair Spence University of Bath

Inexact inverse iteration and tuned preconditioning


	Outline
	Motivation
	Inexact Inverse Iteration
	Krylov solvers
	Tuning the right-hand side
	Tuning and Preconditioning
	Symmetric Problems
	Theory

