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MOTIVATION
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Motivation

Modeling of Errors in Variables, Linear Parameter Estimation,

Linear Regression (Orthogonal Regression) . . .

In the language of computational linear algebra:

Least Squares, (Scaled) Total Least Squares, Data Least Squares.

(We only consider orthogonally invariant measures).

Main tools for analysis and computation:

Orthogonal bidiagonalization,
Singular value decomposition (SVD).
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Motivation

Approximation problem

Ã nonzero n by k matrix, b̃ nonzero n-vector. With no

loss of generality n > k (add zero rows if necessary). Consider

Ã x̃ ≈ b̃, (ÃT b̃ 6= 0 for simplicity),

where ≈ typically means using data corrections of the prescribed type

in order to get the nearest compatible system.

The size of the required minimal data correction

(of b̃ in LS, of b̃ and Ã in (Scaled) TLS, of Ã in DLS)

represents the distance to the nearest compatible system.
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Motivation

● when errors are confined to b̃ : LS

Ã x̃ = b̃ + r̃ , min ‖r̃‖2 ;

● when errors are contained in both Ã and b̃ : (Scaled) TLS

(Ã + Ẽ) x̃ γ = b̃ γ + r̃ , min ‖[r̃, Ẽ]‖F ,

for a given scaling parameter γ;

● when errors are restricted to Ã : DLS

(Ã + Ẽ) x̃ = b̃ , min ‖Ẽ‖F .
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Motivation

The data Ã , b̃ can suffer from

● multiplicities – the solution may not be unique;

● conceptual difficulties – when there are stronger colinearities

among the columns of Ã than

between the columnspace of Ã
and the right hand side b̃ ,

the TLS solution does not exist.

Extreme example: Ã not full column rank, but b̃ /∈ R(Ã).

It would be ideal to separate the information necessary and sufficient for
solving the problem from the information which is irrelevant or not needed.
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Motivation

Extracting the necessary and sufficient information:

In order to minimize possible numerical difficulties, it should be done at
the earliest possible stage of the solution process.

We prove that this important separation step can always be achieved via
some orthogonal transformations.

The resulting block structure reveals the structure of information which is
present, though in most cases invisible, in the original untransformed data.
In this sense, any (scaled) TLS problem can be considered structured.
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Motivation

For simplicity of exposition, the presentation is mostly restricted to
(unscaled) TLS.

Except for very few exceptions specified below,
this presentation assumes exact arithmetic.
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Content

1. Golub and Van Loan analysis

2. Extension of Van Huffel and Vandewalle

3. Conceptual difficulty – another look

4. Core problem within Ã x̃ = b̃

5. Techniques, if time permits

6. Numerical issues, regularization of ill-posed problems
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1. GOLUB AND VAN LOAN

ANALYSIS
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1. Golub and Van Loan analysis

Compatibility condition (Ã + Ẽ) x̃ = b̃ + r̃ is equivalent to

(

[b̃, Ã] + [r̃, Ẽ]
)

[

−1

x̃

]

= 0 .

Look for the smallest perturbation [r̃, Ẽ] of [b̃, Ã] which makes the last

matrix rank deficient. If the right singular vector corresponding to the

smallest singular value of [b̃, Ã] has a nonzero first component, then

scaling it so that the first component is −1 gives the basic TLS solution.
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1. Golub and Van Loan analysis

Theorem

If σmin (Ã) > σmin ([b̃ , Ã]), then the Algorithm GVL gives

the unique solution,

[b̃ , Ã] = Ũ Σ̃ Ṽ T =
k+1
∑

i=1

ũi σ̃i ṽ
T
i , ṽk+1 =

[

ν

w

]

,

x̃ = −
1

ν
w , [r̃ , Ẽ] = − ũk+1 σ̃k+1 ṽT

k+1 .

[Golub - 73], [Golub, Van Loan - 80], (see also
[Golub, Hoffman, Stewart - 87]) contain much more, in particular,
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1. Golub and Van Loan analysis

● Scaling of columns and weighting of rows;

● Minimum 2-norm solution;

● Scaled TLS solution → LS solution as γ ց 0;

● TLS sensitivity analysis;

● Enlightening comments on possible numerical difficulties.
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1. Golub and Van Loan analysis

The condition σmin (Ã) > σmin ([b̃ , Ã]) is sufficient,

but not necessary: If σmin (Ã) = σmin ([b̃ , Ã]) ,

then there might be a solution, or it can happen that

ṽk+1 =

[

0

w

]

and the TLS formulation does not have a solution.
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1. Golub and Van Loan analysis

The minimum norm solution: (Remember [b̃ , Ã] = Ũ Σ̃ Ṽ T )

σ̃j > σ̃j+1 = . . . = σ̃k+1 , V ′ = [ṽj+1 , . . . , ṽk+1] ,

U ′ = [ũj+1 , . . . , ũk+1] .

If eT
1 V ′ 6= 0, then take Q′, Q′T Q′ = Q′Q′T = I such that

(eT
1 V ′) Q′ = ν eT

1 ; set ṽ = (V ′ Q′) e1 =

[

ν

w

]

, ũ = U ′ Q′ e1.

The solution is given by

x = −
1

ν
w , [r̃ , Ẽ] = − ũ σ̃k+1 ṽT .
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2. EXTENSION OF VAN HUFFEL

AND VANDEWALLE
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2. Extension of Van Huffel and Vandewalle

If eT
1 V ′ = 0, i.e. no column of V ′ has a nonzero first component,

then the corresponding directions in the columnspace of Ã bear no

information whatsoever about the “observation” or “response” b̃ . In other

words, the correlations between the columns of Ã are stronger than the

correlations between the columnspace of Ã and the vector b̃ .

[Van Huffel, Vandewalle – 91]:

Eliminate some unwanted directions in the columnspace of Ã
(nonpredictive colinearities) uncorrelated with the vector b̃ .
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2. Extension of Van Huffel and Vandewalle

Consider the splitting

[b̃ , Ã] =

q
∑

i=1

ũi σ̃i ṽ
T
i +

k+1
∑

i=q+1

ũi σ̃i ṽ
T
i ,

where q is the maximal value of i such that eT
1 ṽi 6= 0.

The nongeneric TLS formulation uses the additional restriction:

(Ã + Ẽ) x̃ = b̃ + r̃ , min ‖ [r̃ , Ẽ] ‖F subject to

[r̃ , Ẽ] [ṽq+1 , . . . , ṽk+1] = 0 .
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2. Extension of Van Huffel and Vandewalle

Theorem

The nongeneric TLS solution always exists,

the minimum norm nongeneric TLS solution is unique.

We call the nongeneric extension of Van Huffel and Vandewalle EVHV.

Any decision as to whether the problem is generic or nongeneric can be

made only after completing the SVD of [b̃ , Ã] .
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2. Extension of Van Huffel and Vandewalle

The nongeneric approach completes the definition of (Scaled) TLS.

It always leads to a meaningful well justified solution. The computation,

however, does not remove all directions in the column space of Ã
uncorrelated with the vector b̃ , nor all redundant data.

The basic condition is σmin (Ã) > σmin ([b̃, Ã]).

When σmin (Ã) = σmin ([b̃, Ã]) there might still be a solution,

and this can be extended to the minimum norm solution in the case of

nonuniqueness. The theory was then advanced by the nongeneric

extension EVHV. The fact that the basic condition is sufficient but not

necessary complicates the whole theory and computations.
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3. CONCEPTUAL DIFFICULTY

– ANOTHER LOOK
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3. Conceptual difficulty – another look

Consider
[

b A
]

=

[

b1 A11 0

0 0 A22

]

,

so that the problem Ax ≈ b can be rewritten as two independent

approximation problems

A11 x1 ≈ b1 ,

A22 x2 ≈ 0 ,

with the solution x =

[

x1

x2

]

.
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3. Conceptual difficulty – another look

But A22x2 ≈ 0 says x2 lies approximately in the null space of A22,
and no more.

Thus unless there is a reason not to, we can set x2 = 0.

Now since we have obtained b with the intent to estimate x,
and since x2 does not contribute to b in any way —

the best we can do is estimate x1 from A11 x1 ≈ b1.
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3. Conceptual difficulty – another look

We need only consider the case where Ax ≈ b is incompatible.

Then A11x1 ≈ b1 is also incompatible.

We will show later that we can get:

● A11 is a (p + 1) × p matrix with no zero or multiple singular values,

● b1 has nonzero components in all left singular vector subspaces

of A11. That is if A11 = U11Σ1V
T

11
, then UT

11
b1 has no zero entry.

As a consequence we will have the desired basic condition:

● σmin (A11) > σmin([b1, A11]) .
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3. Conceptual difficulty – another look

What will the standard approaches give?

The SVD of [b, A] is the direct sum of the SVDs of [b1, A11]
and A22 . Indeed,





b1 A11 0

0 0 A22



 =





U1 Σ1 V T
1 0

0 U2 Σ2 V T
2



 ,

then extend the singular vectors by zeros.
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3. Conceptual difficulty – another look

Since σmin (A11) > σmin([b1, A11]) ,

● σmin (A22) > σmin ([b1, A11]) implies σmin (A) > σmin ([b, A])

and the algorithm of Golub-Van Loan (AGVL) finds the unique solution.

● σmin (A22) = σmin ([b1, A11]) implies σmin (A) = σmin ([b, A]) ;

σmin ([b, A]) is multiple, but eT
1 V ′ 6= 0 . Consequently, AGVL finds

the unique minimum norm solution.

● σmin (A22) < σmin ([b1, A11]) implies σmin (A) = σmin ([b, A])

and eT
1 V ′ = 0. The problem is considered by AGVL unsolvable.

The nongeneric extension EVHV has to be applied.
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3. Conceptual difficulty – another look

The EVHV projects out (by imposing the additional condition) “the part of

the block” A22 with singular values below σmin([b1, A11]). Then it

solves the projected problem using the standard

(minimum norm solution) approach.

The situation is illustrated on a simple example.
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3. Conceptual difficulty – another look

[b , A] =





b1 A11 0

0 0 A22



 =







1 1 0

0 1 0

0 0 ω







SVD of [b1 , A11] =
[

0.8507 -0.5257

0.5257 0.8507

] [

1.618 0

0 0.618

] [

0.5257 -0.8507

0.8507 0.5257

]T

● If ω ≥ σmin([b1, A11]) = 0.618 , then all is fine.

● If ω < σmin([b1, A11]) = 0.618 , then we see the trouble:
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3. Conceptual difficulty – another look

Take any z , define r1 = b1 − A11 z .

Then for any θ > 0 , (denoting v2 , u2 the singular vectors

corresponding to σmin (A22) ≡ σ2 , here v2 = 1 , u2 = 1 ,

σmin (A22) = ω )





b1 A11 r1 θ−1 vT
2

0 0 A22 − u2 σ2 vT
2













−1

z

v2 θ









≡





b1 A11 r1θ
−1

0 0 0













−1

z

θ









= 0 ,
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3. Conceptual difficulty – another look

For large θ we have ‖[r , E]‖F → σmin ([A22]) = ω and

“close to optimal solution vector”

[

z

v2 θ

]

≡

[

z

θ

]

which is absolutely meaningless, since it couples the blocks and reflects

no useful information whatsoever.

The nongeneric EVHV imposes condition [r , E] [0 , 0 , 1]T = 0 ,

and constructs the unique nongeneric solution from the block [b1 , A11] .
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3. Conceptual difficulty – another look

Motivation for the next step

In this section, the problem was structured so that the difficulty was clearly

revealed and the solution was transparent.

We claim and show that analogous structure, fully determined by the

multiplicities and irelevant information in the data b̃ , Ã can always be

found via proper orthogonal transformations.

The solution can then be found by ignoring all multiplicities and irelevant

information (i.e. block A22 ).
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4. CORE PROBLEM

WITHIN Ã x̃ ≈ b̃
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4. Core problem within Ã x̃ ≈ b̃

Our suggestion is to find an orthogonal transformation

P T [b̃ , Ã Q] =

[

b1 A11 0

0 0 A22

]

, P−1 = P T , Q−1 = QT

so that A11 has minimal dimensions, and A11x1 ≈ b1 can be solved

by the algorithm given by Golub and Van Loan. Then solve

A11x1 ≈ b1 , and take the original problem solution to be

x̃ = Q

[

x1

0

]

.
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4. Core problem within Ã x̃ ≈ b̃

Such an orthogonal transformation is given by reducing [b̃, Ã] to an
upper bidiagonal matrix. In fact, A22 need not be bidiagonalized,

[b1, A11] = P T
1 [b̃, Ã Q1] has nonzero bidiagonal

elements and is either

[b1 | A11] =















β1 α1

β2 α2

· ·

βp αp















, βiαi 6= 0, i = 1, . . . , p

if βp+1 = 0 or p = n , (where Ã is n × k), or
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4. Core problem within Ã x̃ ≈ b̃

[b1 | A11] =





















β1 α1

β2 α2

· ·

βp αp

βp+1





















, βiαi 6= 0 , βp+1 6= 0

if αp+1 = 0 or p = k (where Ã is n × k).

In both cases: [b1, A11] has full row rank and A11 has full column rank.

Technique: Householder reflections or Lanczos-Golub-Kahan
bidiagonalization.
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4. Core problem within Ã x̃ ≈ b̃

Theorem

(a) A11 has no zero or multiple singular values, so any zero singular

values or repeats that Ã has must appear in A22 ;

(b) A11 has minimal dimensions, and A22 maximal dimensions, over all

orthogonal transformations of the form given above;

(c) All components of b1 in the left singular vector subspaces of A11 are

nonzero. Consequently, the solution of the TLS problem A11x1 ≈ b1

can be obtained by the algorithm of Golub and Van Loan.
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4. Core problem within Ã x̃ ≈ b̃

The core problem approach consists of three steps:

1. Orthogonal transformation [b, A] = P T [b̃ , Ã Q] , where the upper
bidiagonal block [b1, A11] is as above and A22 is not

bidiagonalized. All irrelevant and multiple information is filtered

out to A22 .

2. Solving the minimally dimensioned A11 x1 ≈ b1 by AGVL.

3. Setting x̃ = Q x ≡ Q

[

x1

0

]

, (if we take x2 = 0).
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4. Core problem within Ã x̃ ≈ b̃

The core problem approach does not need to complete the SVD

of all of [b̃ , Ã] . When the bidiagonalization stops, we use only the

necessary (and sufficient) information for computing the solution.

The approximation problems for the original data [b̃, Ã] and the

orthogonally transformed data [b, A] are equivalent. Consequently

the core problem approach always gives meaningful solutions by setting

x2 = 0 .
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4. Core problem within Ã x̃ ≈ b̃

Theorem

The core problem approach gives in exact arithmetic the minimum norm

(Scaled) TLS solution of Ãx̃ ≈ b̃ determined by the algorithm of Golub

and Van Loan, if it exists. If such a solution does not exist, then the core

problem approach gives the nongeneric minimum norm (Scaled) TLS

solution determined by the algorithm of Van Huffel and Vandewalle.



C.C. Paige and Z. Strakoš 40

5. TECHNIQUES, IF TIME PERMITS
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5. Techniques, if time permits

5.1. Understanding core problems . Start with the SVD of A:

[b̃, Ã] =



b̃

∣

∣

∣

∣

∣

∣

U





S 0

0 0



 V T



 = U





c̃ S 0

d 0 0









1 0

0 V T





Use orthogonal transformations from the left and right in order to

● transform nonzero d to δe1;
● create as many zeros in c̃ as possible;
● move out all zeros in c̃,

● and so move out all multiplicities and unneeded elements in S.
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5. Techniques, if time permits

Result (with new U , V ):

UT [b̃, ‖ÃV ] =





b1 A11 0

0 0 A22



 =









c S1 0

δ 0 0

0 0 S2









δ is nonzero (and the corresponding row exists) if and only if the system

is incompatible. Size of the core problem ( p × p or (p + 1) × p) is

given by the number of the left singular subspaces of Ã, corresponding to

distinct nonzero singular values, in which b̃ has a nonzero component.

( c has all its components nonzero, singular values in S1 are distinct

and nonzero).
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5. Techniques, if time permits

5.2. Obtaining this structure from the bidiagonalization

Upper bidiagonalization of [b̃, Ã]. Then, using A11 = U11S1V
T
11,

(obtaining A22 = U22S2V
T
22 is unnecessary),

[

b1 A11 0

0 0 A22

]

=

[

U11 r1 0

0 0 U22

]







c S1 0
δ 0 0

0 0 S2













1 0 0
0 V T

11
0

0 0 V T

22







where c ≡ UT
11b1, δ ≡ ‖w‖ ≡ ‖b1 − U11c‖, and, if δ 6= 0,

r1 ≡ w/δ.
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5. Techniques, if time permits

5.3. Equivalence with the minimum norm TLS

Orthogonal transformations do not change the problem. Therefore,
consider the (partial) upper bidiagonal form in the incompatible case
(the compatible case is obvious).

[b, A] =





b1 A11 0

0 0 A22



 =





















β1 α1

β2

. . . 0

. . . αp

βp+1

0 0 A22
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5. Techniques, if time permits

Case 1: σmin(A) > σmin([b, A]) > 0.

Case 2: σj([b, A]) > σj+1([b, A]) = . . . = σk+1([b, A]),

V ′ = [ṽj+1, ṽj+2, . . . , ṽk+1],

Case 2a: eT
1 V ′ 6= 0.

Case 2b: eT
1 V ′ = 0.
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6. NUMERICAL ISSUES,

REGULARIZATION

OF ILL-POSED PROBLEMS
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6. Numerical issues and regularization

Numerically, determining b1 , A11 , A22 will depend on some
threshold criterion.

If the problem is ill-posed and the data are corrupted by noise, then
determining and solving the numerical core problem should also
incorporate some way of determining what we can of a meaningful
solution, such as regularization.

A survey of regularization in connection with TLS is given in [Hansen,
O’Leary –97], [Golub, Hansen, O’Leary – 99].
Also in computational statistics, and the Russian school inspired by
Tikhonov [Zhdanov et al. – 86, 89, 90, 91].



C.C. Paige and Z. Strakoš 48

6. Numerical issues and regularization

Truncated TLS

(A + E) x = b + r, min ‖ [r, E] ‖F subject to

(rank ([b + r, A + E]) =) rank (A + E) = m .

Its (minimum norm nongeneric TLS) solution is constructed by
considering the small singular values equal and set to zero, while
preserving the singular vectors. With the restriction of the rank, the T-TLS
distance is (unlike in the nongeneric TLS problem) the sqare root of the
sum of squares of the neglected singular values.

Suggested in [van Huffel, Vandewalle - 91, Section 3.6.1].
Analyzed in [Fierro, Bunch – 94], [Fierro, Bunch – 96], [Wei – 92], see also
[Stewart – 84], [van der Sluis, Veltkamp – 79].
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6. Numerical issues and regularizations

Lanczos Truncated TLS

Lanzcos bidiagonalization of [b̃ , Ã] . Then compute an approximate

truncated TLS solution by applying TLS to the bidiagonal system with

the (k + 1) × k matrix at each step k . Stopping criterion is based

on the TLS solution of the (k + 1) by k bidiagonal problem.

[Fierro, Golub, Hansen, O’Leary – 97], [Sima, Van Huffel – 05]

Lanczos Truncated TLS “approximates” the core problem.
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6. Numerical issues and regularization

An analogy for solving ill-posed LS problems?

LSQR [Paige, Saunders – 82],
[Björck – 88], [Björck, Grimme, Van Dooren – 94],
see also [O’Leary, Simmons – 81], [Hanke, Hansen – 93], [Hanke – 01],
book [Hansen – 98], . . .

Another field uses different names:

Principal component regression (Truncated SVD) [Massy – 65],
partial least squares [Wold – 75], see the explanatory paper [Elden – 04].
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6. Numerical issues and regularization

In regularization of noisy ill-posed problems, interesting questions remain

open. Consider, e.g., noisy ill-posed LS problems and Modified TSVD

[Hansen, Sekii, Shibahaski – 92]

min ‖Lx̃ ‖2 subject to min ‖ Ãx̃ − b̃ ‖ .

If L is a general matrix with full row rank, then one can consider

x2 6= 0 for numerically determined A22 . This does not alter

the core problem concept theoretically or computationally,

cf. [Fierro, Golub, Hansen, O’Leary – 97, Section 5].
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CLOSING REMARKS
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Closing remarks

The core problem approach represents a clear computationally efficient
concept which in exact arithmetic gives in all cases (Scaled) TLS solutions
identical to the minimum norm solutions given by AGVL resp. EVHV.

Theoretically, it simplifies and extends the previous (Scaled) TLS analysis.

Computationally, it can lead to interesting numerical questions and
applications. A close connection to regularization.

It needs to be extended to problems with multiple right hand sides.
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Closing remarks

THANK YOU!
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