
Chapter three

Numerical behavior

– General considerations
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1. Can’t we compute exactly?

2. Intermediate quantities and desired accuracy

3. Computational cost and numerical stability
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3.1 Can’t we compute exactly?

No, some problems cannot be solved exactly in principle. For

example, eigenvalues cannot in general be computed exactly be-

cause of the Abel theorem. Consequently, the Schur decomposi-

tion cannot in general be computed exactly - in a finite number

of steps. There is an unavoidable truncation error.

Limited accuracy of performing elementary computer operations

(storing data, + , − , ∗ , /) leads to rounding errors. This we

call precision, and speak about finite precision arithmetic. We

can emulate arbitrary precision arithmetic, but we cannot use it

widely in solving practical problems.
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Will that issue be resolved by the progress in technology? Hardly.

Accuracy of a computed result is determined by the way the

elementary rounding errors on the machine precision level are

amplified in the computational process. Machine precision will

always be limited, and it influences the resulting accuracy linearly,

while the growth can be exponential.

However, the amplification of elementary rounding errors is not

random, it can be analyzed and understood!

Rounding errors are not always bad;

see, e.g., breaking the symmetry in shifted QR algorithm which

can theoretically suffer from infinite oscillations (relation to dy-

namical systems, [Batterson, Smilie -90]), or generating nonzero

components in invariant subspaces in the Lanczos method.
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If not under control, elementary rounding errors can grow and

cause a large computational (numerical) error, which can invali-

date the whole solution process. Interestingly, this fact was well

understood by the founding fathers Von Neumann, Goldstine,

Turing, Wilkinson, Forsythe . . . However, it has largely been

ignored in most numerical PDE literature.

[Nash, Golub - 90, quote by Parlett], [Babuška - 03], [Oden et

al - 03], [Wohlmuth, Hoppe - 99], [Stein(ed) - 03]

Possible consequences of not including computational error in

the error analysis of the whole solution process?
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• Either the computation of the approximate solution of the

algebraic problem consumes unnecessary time and resources

due to aiming at unnecessary high accuracy,

• Or the computational error which is not under control can

impinge the other stages of the solution process and spoil

the numerical solution.

Work in this direction will have to be done. Possible candidates

for trouble? Mesh refinements close to singularity.

A philosophical difficulty of rounding error analysis - it can not

be done mechanically without a deep knowledge of the analyzed

method and algorithm.
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3.2 Intermediate quantities and desired accuracy

Do we need in general highly accurate intermediate quantities

in order to guarantee a required (high or not) accuracy of the

computed final result? No, we do not.

Surprising observation Parlett, Wilkinson, see [Parlett - 90]

The number of significant digits in the intermediate quantities

generated in a computation may be quite irrelevant to the accu-

racy of the final output.
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Vital correlations between (inaccurately) computed quantities

(recall, amplification of rounding errors is not random) can lead

to highly accurate final results. Understanding gained via round-

ing error analysis can guarantee final accuracy close to the ma-

chine precision level.

Such understanding is based on deep mathematical knowledge

about the analyzed method and algorithm.

Example:

The Lanczos method for solving Hermitian eigenvalue problems.
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Principle of the Lanczos method

Ideally, find in steps 1 through n an N by n matrix Qn having

orthonormal columns such that

Q∗
n A Qn = Tn ,

where Tn is Hermitian tridiagonal. Eigenvalues of Tn are then

considered approximations of the (dominant) eigenvalues of A .

Computationally, in the presence of rounding errors, Qn does

not have orthonormal columns. The columns may even become

(numerically) linearly dependent.
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Even worse, for the computed quantities

Q∗
n A Qn 6= Tn ,

and Tn may even not represent a matrix of the operator A
projected on the Krylov subspace generated by the computed

Lanczos vectors. Most of the entries in Tn may even not have

a single digit of accuracy, i.e.

Tn − Tn can be large.

Does this mean a total disaster? No! The magic is called back-

ward error, and we know it from the work of Wilkinson, Paige

and Greenbaum.
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For steps 1 to n of a given Lanczos FP computation there exist:

• An M by M matrix Â having all its eigenvalues close to

the eigenvalues of A , M ≥ N , possibly M ≫ N ;

• An M by n matrix Q̂n having orthonormal columns such that

Q̂∗
n Â Q̂n = Tn

Results of the finite precision Lanczos computation for the matrix

A are equivalent to the results of the exact Lanczos computation

for the matrix Â having nearby eigenvalues.
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Consequently, as we will see, Tn is used for computing the

eigenvalues of A to close to full machine precision!

The bad part of the story is that this remarkable success is

not without possible side effects. The eigenvalues of A are

not approximated in the same order and with the same speed

as it would be ideally (in exact arithmetic). This is caused by

the fact that single eigenvalues can in finite precision Lanczos

computation be approximated by multiple computed copies.

In order to prevent the side effects, we must pay the price -

here not by computing the intermediate quantities using higher

precision, but by applying some correction procedure such as

partial reorthogonalization; for an overview see [Parlett - 92].
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3.3 Computational cost and numerical stability

Towards a mathematical foundation of numerical analysis

– quest for a formal mathematical model of computing with real

numbers, see [Blum, Cucker, Shub, Smale - 99], [Smale - 97]:

• Complexity theory of numerical analysis – study of the num-

ber of arithmetic operations required to pass from the input

to the output of a numerical problem;

• Upper bounds aspect – worst or average case analysis of

basic algorithms;

• Lower bounds aspect – examination of efficiency for all al-

gorithms solving a given problem (the intrinsic difficulty of

solving a problem).
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Complications

• Ill-posed problems,

• Conditioning,

• Round-off errors,

• Problems are by their nature solved only to a certain accuracy

(eigenvalue problems, iterative methods in general . . . ).

Conclusion: There are practically no results linking complexity

and numerical stability of computing over real numbers.

[Cucker 99]
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However, we should keep in mind that in numerical analysis, al-

gorithms are tools for solving practical problems - see also [CBSS

- 99, p.23], [Iserles - 00], [Baxter, Iserles - 03].

We should consider, that a practical problem means some par-

ticular (class of) data, for which we seek the approximate solu-

tion(s). The specific properties of the data (inner correlations

etc.) are used in order to get the approximate solution efficiently.

Consequently, questions related to a particular problem (includ-

ing data) are much more specific than worst-case or average-case

bounds.

We do not focus on complexity and restrict ourselves to the cost

of particular computations. There are many results linking the

cost of a particular computation to numerical stability!
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*
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Chapter four

Numerical behavior

– Short recurrences
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1. Loss of orthogonality leads to delay

1.1 Hermitian systems

1.2 Non-Hermitian systems

2. Maximal attainable accuracy

3. Measuring convergence in FP computations
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Example: In finite precision conjugate gradients orthogonality

is lost, convergence is delayed and final accuracy is limited
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4.1 Loss of orthogonality leads to delay

In the Hermitian case, the underlying basis (though it may not

be normalized) is the Lanczos basis. Therefore we must study

rounding error effects in computing Lanczos vectors.

Lanczos vectors are computed using a three-term recurrence,

or, possibly, using two coupled two-term recurrences. Conse-

quently, orthogonality (even linear independence) may be lost

quickly. For a long time it was concluded that loss of orthog-

onality meant also loss of all elegant mathematical structure of

orthogonal polynomials (and Gauss quadrature) which could not

be extended to computational behavior of the Lanczos process.

20



However, [Paige - 71, 76, 80]: Loss of orthogonality follows a

regular structure, which can be revealed!

In finite precision computation

AQn = QnTn + βn+1qn+1eT
n + Fn, ‖ Fn ‖ ≤ n1/2 ‖ A ‖ ε1 .

QT
nQn 6= I , Tn computed by FP L(A, q1) may be far from the

theoretical counterpart.
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Tn = Sn diag (θ
(n)
j ) S∗

n , Sn = [s
(n)
1 , . . . , s

(n)
n ] , s

(n)
j =











s
(n)
1j
...

s
(n)
nj











s
(n)
1j top element - weight,

s
(n)
nj bottom element - approx. bound, δnj = βn+1|s

(n)
nj | ,

θ
(n)
j Ritz value,

z
(n)
j = Qns

(n)
j Ritz vector.
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Accuracy of the Ritz values computed in the Lanczos method

Exact arithmetic: minl |λl − θ
(n)
j | ≤ ‖Az

(n)
j − θ

(n)
j z

(n)
j ‖ ≤ δnj .

Finite precision arithmetic:

min
l

|λl − θ
(n)
j | ≤

‖Az
(n)
j − θ

(n)
j z

(n)
j ‖

‖z(n)
j ‖

≤ ( δnj + n1/2‖A‖ε1 )

‖z(n)
j ‖

Due to the loss of orthogonality it can happen ‖z(n)
j ‖ → 0 !

The quantity δnj is easy to compute with negligible additional

rounding errors. Does it tell anything about convergence of θ
(n)
j

in finite precision computations?
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|λi − θ
(n)
j | ≤ max

{

2.5(δnj + n1/2 ‖ A ‖ ε1), (n + 1)3 ‖ A ‖ ε2
}

,

‖ z
(n)
j − (z

(n)
j , ui)ui ‖ ≤ (δnj + n1/2 ‖ A ‖ ε1)

min
l 6=i

|λl − θ
(n)
j |

δnj = βn+1|s
(n)
nj |

Fascinating result! Result of FP computation verified at no

cost! Please notice that without the theory developed by Paige,

the ideal relations would imply nothing about the result of FP

computations!
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Bounds for |s(n)
nj |, δnj? [Parlett - 80], [Greenbaum, S - 90]

Loss of orthogonality among the Lanczos vectors? Paige:

|(z(n)
j , qn+1)| =

|ε(n)
jj |
δnj

, |ε(n)
jj | ≤ n ‖ A ‖ ε2 .

As long as there is no converged Ritz value, orthogonality must

be well preserved. If the orthogonality among z
(n)
j , qn+1 is lost,

then θ
(n)
j have converged to some λi .

New related results

[Wülling - 04, 05?], [Zemke - 04], [Meurant - 05?]
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Other work on the loss of orthogonality:

• In [Grcar - 81, never published] Forward analysis - when

the forward error of the computed Lanczos vectors is not

exceeding
√

ε , the computed Krylov subspace is correct to

the ε level (the error is largely within the exact subspace).

This was called projection property. In order to maintain the

projection property, Grcar suggested periodic reorthogonal-

ization. It makes sense only until the forward error is below√
ε . Not a formal mathematical theory.

• Berkeley, Under the influence of Parlett, Kahan, see [Parlett

- 80, 92, 94], [Parlett, Reid - 81], [Greenbaum, S - 92], [S,

Greenbaum - 92]
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• In [Parlett, Scott - 79]: Maintaining the strong linear in-

dependence of the Lanczos vectors - semiorthogonality. Or-

thogonalize only against converged Ritz vectors (when δnj ≈
‖A‖√ε .

• In [Scott -79]: Ideally, for any matrix A there is always a

starting vector q1 such that the Lanczos method does not

converge to any eigenvalue until the last step. Construction

- Ritz values at step n − 1 prescribed as the midpoints of

the intervals given by the eigenvalues.

Works also computationally (from experiments). Consequence:

Rounding error amplification can strongly depend on the ini-

tial vector!

28



• In [Simon - 84, 84]: Monitoring semiorthogonality via simple

scalar recurrence, partial reorthogonalization. Semiorthogo-

nality ensures, that the computed matrix Tn represents, up

to the terms ≈ ‖A‖ε , the orthogonal projection of A onto

the computed Krylov subspace.

• In [Parlett - 92]: Full reorthogonalization makes sense only

until the semiorthogonality is maintained.

• Tight clusters of eigenvalues - [Dhillon - 97], [Parlett - 96],

[Ye - 95], [Dhillon, Parlett - 04, 04]
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Delay of convergence: Backward error - like analysis

of the symmetric Lanczos and CG

Finite precision behavior is explained using exact precision results

for a larger problem.

It uses the relationship between Lanczos method, Jacobi matri-

ces and Orthogonal polynomials.
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First, recall that any n distinct points {θ(n)
j }n

j=1 with weights

{ω(n)
j }n

j=1, ω
(n)
j > 0,

n
∑

j=1
ω

(n)
j = 1 , define the unique set of

monic polynomials

1, ψ1, . . . , ψn

orthogonal with respect to the innerproduct

(ϕ, ψ)n =
n

∑

j=1

ω
(n)
j ϕ(θ

(n)
j ) ψ(θ

(n)
j ) .

Recall the R-S integrals!
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If ω
(n)
j = (s

(n)
1j )2 , then ψl are the characteristic polynomials of

Tl (Lanczos polynomials), satisfying the minimization property

‖ ψl ‖n = min { ‖ ψ ‖n , ψ monic of degree ≤ l } , l = 1, . . . , n .

Please notice the interpretation of top elements of Tn’s eigen-

vectors.

Selection of related work: [Karlin, Shapley - 53], [Fischer, Freund

- 93], [Freund, Hochbruck - 93], [Golub, S - 94], [Golub, Meurant

- 94, 97], [Gautschi - 03], ...
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Second, please notice that exact or FP L(A, q1) generates in

steps 1 to n a sequence T1 − Tn which is exactly the same

as in exact L(B, p1) ,

B = V diag (θ
(n)
j ) V ∗, V ∗V = I, p1 = V

(

s
(n)
11 , s

(n)
12 , . . . , s

(n)
1n

)T
,

e.g., for V ≡ Sn, p1 = e1, B ≡ Tn , Tn is generated by the

exact L(Tn, e1) .

FP Lanczos in steps 1 to n → Exact Lanczos
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[Greenbaum - 89] much stronger:

Let J steps of FP L(A, q1) produce TJ . Then TJ is generated

in J steps of exact Lanczos algorithm applied to some AJ , q1J .

AJ is of dimension N + l(J) ; all its eigenvalues lie within tiny

intervals about the eigenvalues of A .

Similarly for the norm of the residuals in the CG method.

[S - 91]: For any eigenvalue of A there must be at least one

eigenvalue of AJ close to it.

Exact distribution of AJ’s eigenvalues depends on the actual

rounding errors.
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[Greenbaum, S - 92]:

FP L(A, q1) and FP CG(A, q1) behave very similarly as the

exact algorithms applied to any Â, q̂1 from a certain class Â

is of dimension Nl ,

where Nl eigenvalues are spread throughout tiny intervals about

the eigenvalues of A while each tight cluster has the total weight

of the original eigenvalue.

This model is valid for any reasonable number of steps, practi-

cally no dependence on l (if sufficiently large), small dependence

on the size of intervals.

In terms of the R-S integrals (theory still not finished):
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Finite precision Lanczos (CG) is (with some inaccuracy) the ma-

trix formulation of the exact Gauss quadrature of the R-S integral

for some blurred distribution function ω̂(λ) , which represents the

spectral decomposition of some infinitely dimensional problem.

...

0

1

ω1

ω2
ω3

ω4

ωN

ζ λ1λ2 λ3
. . . . . . λN ξ
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Consequences:

• a small Hermitian (HPD) perturbation causes only a small

change of the Lanczos (CG) behavior.

• Finite precision L (CG) for A, q1 corresponds to the exact

precision L (CG) for Â, q̂1 .

By applying exact precision theory (convergence bounds) to

Â, q̂1 we obtain a quantitative description of FP L (CG) for

A, q1 . [Greenbaum, S - 92], [Notay - 93]

• Approximation to the minimal polynomial is for the case with

individual well-separated eigenvalues very different from the

approximation in the case of tight clusters of eigenvalues.
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Several close roots are placed in well separated tight clusters

due to the minimization property. But it means that, at the

given step, we do not have enough Ritz values to approximate

some eigenvalues in the other parts of the spectrum; the CG

convergence can be for these two cases very different.
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Linear independence of the computed generating vectors is lost

with multiple Ritz values. Delay of convergence: each loss of

linear independence costs one iteration!

iteration . . . n ,

dimension of computed Kn . . . n − i ,

delay . . . i .

It is extremely difficult to estimate for the given step n

∣

∣

∣‖rFP
n ‖ − ‖rn‖

∣

∣

∣ ≤ ‖rFP
n − rn‖

even for HH GMRES (it assumes solving the question about the

stability of Krylov subspaces). We have to rotate our view.

39



0 20 40 60 80 100 120
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

iteration number

re
si

du
al

 n
or

m
s,

 b
ac

kw
ar

d 
er

ro
r,

 e
rr

or
 n

or
m

 a
nd

 lo
ss

 o
f o

rt
ho

go
na

lit
y

CG − Lanczos

For example, for n = 95 dim (Kn) is not 95, but only 43. When

we shift back each point on each convergence curve i = i(n)

steps, we obtain
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which can be compared with
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[Paige - 80].
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4.1.2 Non-Hermitian systems

Small perturbation of A can cause a large perturbation of the

spectrum - the role of eigenvalues?!

• Though some results formally correspond to those of Paige,

their interpretation must be different. [Bai - 94]

• Similarly the re-biorthogonalization (maintaining semidual-

ity). [Day - 99]

• Backward error - like result?
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4.2 Maximal attainable accuracy

recursively computed residual × true residual b − Axn

recursive residuals −→ 0 . Final accuracy?

Two term recurrences:

xn+1 = xn + ωn pn

rn+1 = rn − ωn Apn , pn+1 = rn+1 + ψn pn
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[Sleijpen et al. - 94], [Greenbaum - 97]:

en = (b − Axn) − rn , en = en−1 + ln−1 ,

where ln−1 counts for the local errors in computing xn, rn

from xn−1, rn−1 .

Consequently,

en+1 = e0 +
n

∑

j=0

lj ,

global error is given as the sum of local errors.
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Bound:

‖ek‖
‖A‖‖x‖ ≤ const k θk ε + O(ε2) , θk = max

j≤k
‖xj‖/‖x0‖ .

Consequence: Oscillations of the size of the approximate

solution may damage the final accuracy (BiCG - like methods!).

Extension to LS: [Björck, Elfving, S - 97].

Backward stability (based on the assumption ‖rk‖ → 0).
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Three-term recurrences - a different story:

Coupled two-term recurrences replaced by

xn+1 = −( rn + αn xn + βn−1 xn−1 )/γn,

rn+1 = −(Arn + αn rn + βn−1 rn−1 )/γn,

where γn = −(αn + βn−1).

Examples: Hestenes & Stiefel CG × Rutishauser CG; BiCG

× BIORes; (QMR variants).
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Observation: three-term implementations “less stable” than

the coupled two-term ones (for nonsingular systems) - the final

accuracy can be much worse.

Explanation: [Gutknecht, S - 97]

en = (b − Axn) − rn , ln−1 local error analogous to two-term

case (not equal!).

en+1 = −
(

en
αn

γn
+ en−1

βn−1

γn
+ ln

)

Local errors are potentially amplified by the recurrence.
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Global error in terms of local errors - multiplicative factors may

become large!

en+1 = e0 −
n

∑

j=0

lj

− l0

(

β0

γ1
+ · · · + β0 . . . βn−1

γ1 . . . γn

)

− l1

(

β1

γ2
+ · · · + β1 . . . βn−1

γ2 . . . γn

)

...

− ln−1
βn−1

γn
.
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Example: three term CG (HPD case)

Amplification factors:

(1−ϑ)
1

κ(A)

‖rk‖2
‖ri−1‖2 ≤

k
∏

j=i

βj−1

γj
≤ (1+ϑ)κ(A)

‖rk‖2
‖ri−1‖2 , ϑ ≪ 1 .

Note: holds for the computed values;

here [Greenbaum - 89], [Greenbaum, S - 92] results used.

Consequence: Oscillations of the size of the recursive residuals

may extensively damage the final accuracy.
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The CG relative residual can indeed very strongly oscillate!
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4.3 Measuring convergence in FP CG

We present a CG example, matrix s3rmt3m3 from the Cyllshell

collection by Reijo Kouhia, incomplete Choleski preconditioner.

Ideally (in exact arithmetic)

EST2 =
n+d−1

∑

l=n

γl ‖rl‖2 = rT
0 (xn+d − xn) .

Computationally, though the second estimate is evaluated accu-

rately, it gives misleading information.
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For the numerically unstable estimate, the identity is in finite

precision computations not valid. Rounding error analysis is fun-

damental, it should not be ignored!
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Among the issues not covered:

• Breakdowns and their influence [Van Den Eshof - 03];

• Closeness to singularity and incompatible systems;

• Can short recurrences produce a well-conditioned basis? (in-

terpretation of look-ahead techniques in FP computations);

• Inaccurate Krylov subspace methods [Sleijpen et al. - 02],

[Simoncini, Szyld - 02].

53


