
Chapter five

Numerical behavior of GMRES
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5.1 Orthogonality and numerical stability

[Liesen, Rozložńık, S - 02]: The choice of the subspace (basis)

which is used in computations can have a fundamental impact.

‖rn‖ = min
u∈x0+Kn(A,r0)

‖b − Au‖ = min
z∈A Kn(A,r0)

‖r0 − z‖

⇔ rn ⊥ A Kn(A, r0) .
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The straightforward approach

Based on the orthonormal basis of AKn(A, r0) . Define w1 ≡
Ar0/‖Ar0‖ , v1 = r0/‖r0‖ . Then the recursive columnwise QR-

factorization yields

[Av1, AWn−1] = A [v1, Wn−1] ≡ Wn Rn ,

Wn ≡ [w1, . . . , wn], WT
n Wn = In ,

span {w1, . . . , wn} = AKn(A, r0) ,

κ([v1, Wn−1]) ≤ κ(Rn) ≤ κ(A)κ([v1, Wn−1]) .
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Using the orthonormal basis w1, . . . , wn of AKn(A, r0) :

xn = x0 + [v1, Wn−1] tn ∈ x0 + Kn(A, r0) ;

⇒ rn = r0 − A [v1, Wn−1] tn = r0 − WnRn tn ;

⇒ tn = (WnRn)
+ r0 = R−1

n WT
n r0 .

How does this affect the numerical stability?
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Theorem

‖rn‖

‖r0‖
= σn+1([v1, Wn])σ1([v1, Wn]) =

2κ([v1, Wn])

κ([v1, Wn])2 + 1
,

‖r0‖

‖rn‖
≤ κ([v1, Wn]) ≤ 2

‖r0‖

‖rn‖
,

‖r0‖

‖rn‖
≤ κ(Rn) ≤ 2κ(A)

‖r0‖

‖rn‖
.
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Consequently, κ(Rn) must inevitably increase as ‖rn‖ de-

creases, even for small κ(A) and with the most stable way of

computing w1, . . . , wn.

⇒ Computation of tn = R−1
n WT

n r0 is inherently unstable!

Surprise: Numerical behaviour gets worse when orthogonality

of w1, . . . , wn is maintained better; Householder implementation

performs worse than Modified-Gram-Schmidt implementation.

The straightforward approach is used in “Simpler GMRES” [Walker,

Lu Zhou - 94], and it is related to other implementations, e.g.

Orthodir.
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Classical GMRES implementation

Based on the orthonormal basis of Kn(A, r0) . Let v1 ≡ r0/‖r0‖.

Then the Arnoldi process yields

AVn = Vn+1 Hn+1,n ,

Vn ≡ [v1, . . . , vn], V T
n Vn = In ,

span {v1, . . . , vn} = Kn(A, r0) ,

κ(Hn+1,n) ≤ κ(A) .
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Using the orthonormal basis v1, . . . , vn of Kn(A, r0) :

xn = x0 + Vn zn ∈ Kn(A, r0) ,

⇒ rn = r0 − AVn zn = r0 − Vn+1Hn+1,n zn ,

⇒ zn = (Vn+1Hn+1,n)
+ r0 = (Hn+1,n)

+ V T
n+1 r0 .

How does this affect the numerical stability?
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Householder implementations of classical and simpler GMRES

FS1836(183), cond(A)=1.7367e+11

Householder implementations

(residual and backward error).

Excessive ill-conditioning of

computed Rn leads in the

straightforward implementation

to divergence.
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MGS implementations of classical and simpler GMRES

FS1836(183), cond(A)=1.7367e+11

MGS implementations (residual

and backward error). Due to

rounding errors the identity is vi-

olated, and the computed Rn is

not so badly ill-conditioned as it

ideally should be!
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Moral

The choice of the right subspace (basis) is fundamental for nu-

merical stability of the Krylov subspace methods.

Even the best orthogonalization technique in computing the ba-

sis (here Householder reflections) can not compensate for insta-

bilities artificially created due to a bad choice of the subspace.

Paradoxically - preserving orthogonality of the computed basis

can even make things worse!

In the rest of the text we concentrate on classical GMRES.
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Numerical stability of the GMRES implementation based on the

(ideally) orthonormal basis of Kn(A, r0) – many related publi-

cations, e.g.

[Björck - 67], [Björck, Paige - 92], [Karlson - 91], [Arioli, Fassino

- 96], [Drkošová, Greenbaum, Rozložńık, S - 95], [Greenbaum,

Rozložńık, S - 96], [Rozložńık 1997], [Paige, S - 02, 02, 02],

[Giraud, Langou, Rozložńık, van der Eshof - 05], [Rozložńık,

Paige, S - in progress]
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Arnoldi process ≡ recursive columnwise QR decomposition

[r0, AVn] = Vn+1 Rn+1

13



5.2 Householder GMRES

Implementation using Householder reflections was suggested in

[Walker 1988, 89].

A tedious but straightforward proof in [DGRS -95]:

Householder - reflections based implementation of GMRES com-

putes a backward stable approximate solution.
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5.3 Modified Gram-Schmidt GMRES

vn+1 = (I − vnv∗n − . . . − v1v∗1) Avn

= (I − vnv∗n) . . . (I − v1v∗1) Avn

A common general belief: MGS orthogonalization is a good
compromise between propagation of errors (loss of orthogonal-
ity) and algorithm efficiency (computational cost). Price - the
computation is recursive!

Comparison with classical Gram-Schmidt, Householder reflec-
tions, Givens rotations.
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However:

Despite the loss of orthogonality, some algorithms with MGS

provide results as good as algorithms using the most stable or-

thogonalization processes (with the loss of orthogonality among

the basis vectors kept close to the machine precision level).

Theoretical justification?

• Linear least squares: [Björck, Paige - 92];

• Our case: MGS GMRES.
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In MGS GMRES, loss of orthogonality is controlled by conver-

gence.

Statement:

Loss of orthogonality ‖I − V ∗
n+1Vn+1‖F in the modified

Gram–Schmidt Arnoldi process

is inversely proportional

to the value of the GMRES backward error

‖b − Axn‖

‖b‖ + ‖A‖‖xn‖
.
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FS1836, b = ones, x0 = 0
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FS1836, b = ones, x0 = randn
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link the spectrum with convergence ?
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Sherman 2, b MM, x0 = 0
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Proof? A long and yet unfinished story, links with Scaled Total

Least Squares and other strange problems.
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Sherman 2, b MM, x0 = 0
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5.4 What should follow

Loss of orthogonality in MGS Arnoldi

‖I − V T
k+1Vk+1‖F ≈ κ([r0γ, AVkDk])O(ε) .

Loss of orthogonality in CGS Arnoldi (could be based on recent

result which will appear in [GLRvdE -05])

‖I − V T
k+1Vk+1‖F ≈ κ([r0γ, AVkDk])

2O(ε) .

Numerical stability of restarted CGS GMRES.
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