
Chapter 2: Convergence (behavior)

in exact arithmetic

2.3 Non-Hermitian, but normal
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Normal matrices have full set of eigenvectors forming the ba-

sis which can be chosen orthonormal. Therefore the change

to (orthonormal) eigenvector coordinates does not involve any

distortion of geometry.

Substantial difference which causes enormous technical difficul-

ties in proofs and in deriving bounds - the eigenvalues are not

real.

In the remaining part of Chapter 2 we restrict ourselves to the

GMRES method.
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Minimal residual methods

‖rn‖ = min
u∈x0+Kn(A,r0)

‖b − Au‖ = min
z ∈ AKn(A,r0)

‖r0 − z‖

⇔ rn ⊥ AKn(A, r0) .

(Hermitian) MINRES [Paige, Saunders - 75] and its general sim-

plification GMRES [Saad, Schultz - 86]; mathematically equiv-

alent to GCR analyzed in [Elman - 1982], and to many other

(mostly numerically inferior) methods.

MINRES IS NOT a symmetric variant of GMRES!
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Implementation of GMRES [Saad, Schultz - 86]

• Arnoldi basis {v1 = r0/ ‖r0‖, v2, . . . , vn} , AVn = Vn+1Hn+1,n .

• xn = x0 + Vn yn ,

‖‖r0‖e1 − Hn+1,n yn‖ = min
y

‖‖r0‖e1 − Hn+1,n y‖ .

In the normal case still [Joubert -93], [Gurvits, Greenbaum - 93],

[Trefethen - 93]

‖rn‖

‖r0‖
= min

p∈Πn
‖ p(A)q1 ‖ ≤ max

‖q‖=1
min
p∈Πn

‖ p(A)q ‖ = min
p∈Πn

‖ p(A) ‖ .
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2.4.1 Matrix polynomial and worst case bound

For a general matrix it can happen

‖rn‖

‖r0‖
= min

p∈Πn
‖ p(A)q1 ‖ ≤ max

‖q‖=1
min
p∈Πn

‖ p(A)q ‖ 6= min
p∈Πn

‖ p(A) ‖ .

Moreover, there are matrices for which the gap between the worst

case bound and the norm of the minimal operator polynomial is

large.

[Toh - 96], [Joubert, Faber, Knill, Manteuffel - 94]
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For such A and an arbitrary r0 GMRES performes much

better than any analysis based only on A would suggest. This

fact represents a general warning for the operator approach. Its

significance is, however, unclear yet.

Another issue is, that the GMRES behavior for some particular

initial residual (determined, e.g., by the outer forces and the

boundary conditions of the physical problem) can dramatically

differ from the worst case behavior.
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2.4.2 Operator approach

Eigenvalues?

A is diagonalizable:
‖rn‖
‖r0‖

≤ ‖X‖ ‖X−1‖ min
p∈Πn

max
i

|p(λi)| .

When ‖X‖ ‖X−1‖ is reasonably bounded, then eigenvalues tell

the story.

Diagonalizable matrices with simple eigenvalues form a dense

open set in the space of all matrices (a consequence of the

Schur theorem). Can this fact be used in GMRES convergence

analysis for defective marices? In general, it can not. We can

restrict the change of the eigenvalues, but the condition number

of the eigenvector matrix may grow to infinity.
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Jordan form :
‖rn‖
‖r0‖

≤ ‖S‖ ‖S−1‖ min
p∈Πn

‖p(J)‖

The identities and bounds will contain derivatives of pn at the

defective eigenvalues with degrees determined by the size of the

particular Jordan blocks.

A natural idea how to include non-normality: Cauchy integral

representation

f(A) =
1

2πi

∫

Γ
(zI − A)−1 f(z) dz

Γ . . . a simple closed curve (or union of the closed curves) con-

taining the spectrum of A . Focus on the growth of the rezolvent

(zI − A)−1 in the neighborhood of the spectrum.
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ε - Pseudospectra:

‖ (zI − A)−1 ‖ = 1/ε on the boundary Γε . Then

‖ f(A) ‖ ≤
L(Γε)

2πε
max
z∈Γε

|f(z)| .

The GMRES bound

‖ rn ‖ / ‖ r0 ‖ ≤
L(Γε)

2πε
min
p∈Πn

max
z∈Γε

|p(z)|

however, may give a large overestimate.

[Trefethen - 91], [Trefethen - 95], [Greenbaum, S - 94]
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Enclosures, asymptotic convergence factors, conformal mapping,

potential theory, polynomial numerical hull of degree k ...

Recent GMRES convergence results:

Greenbaum, Eiermann, Ernst, Liesen, Nevanlinna, Huhtanen,

Trefethen, Embree, Knizhnerman, Nachtigal, Toh, Starke, Hochbruck,

Lubich, Frommer, Morgan, Meyer, Ipsen, Van der Vorst, Fischer,

Reichel, Calvetti, Simoncini, Bertaccini, Ng, Serra-Capizzano,

.....

Any operator bound separating A from b neglects the de-

pendence of the convergence behavior on b. In the best case it

therefore represents bound for the worst case behavior.
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Are we interested in the worst case?
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2.4.3 Another look

For a given fixed r0 , try to find B such that GMRES(A, r0) ≡

GMRES(B, r0) and GMRES(B, r0) can be analyzed, e.g. B

normal whose eigenvalues can be related to some simple prop-

erties of A . Then we can analyze GMRES(A, r0) in terms

of these simple properties.

• There is always an equivalent unitary matrix.

• If zero is outside the field of values of A then there is an

equivalent HPD matrix. The given behavior of GMRES(A, r0)

can be generated by a HPD matrix B if and only if

‖ r0 ‖, ‖ r1 ‖, . . . , ‖ rn ‖ is monotonically decreasing.
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• The given behavior of GMRES(A, r0) is generated by a

Hermitian matrix B if and only if ‖ rn ‖ decreases

every two consecutive steps.

But, relationship between the eigenvalues of B and some special

properties of A?

Moreover, there is an example of A diagonalizable, eigenvalues

“essentially” determine the GMRES(A, r) , and for some r0
there can be no normal B , GMRES(A, r0) ≡GMRES(B, r0) ,

whose eigenvalues are close to those of A .

[Greenbaum, S - 93]
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Eigenvalues and convergence?

Consider any nonzero eigenvalues and a sequence (desired con-

vergence curve)

f(0) ≥ f(1) ≥ · · · ≥ f(n − 1) > f(N) = 0 .

Then the size of the component of the initial residual eliminated

in the jth GMRES step is φj = (f(j−1)2−f(j)2)
1
2 . Let RN−1

be nonsingular upper triangular, h = (φ1, . . . , φN)T , be the first

column of
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Theorem [Greenbaum], [Arioli, Pták, S - 97]

The following two assertions are equivalent:

1◦ The spectrum of A is {λ1, . . . , λN} and GMRES(A, r0)

yields residuals such that ‖rk‖ = f(k) , k = 0,1, . . . , N .

2◦ A = U (ΦC Φ−1)U∗ and r0 = Uh

where C is the companion matrix corresponding to the

spectrum of A and U is unitary.

Theorem gives a complete parametrization of the set of all pairs

{A, r0} for which GMRES gives the prescribed convergence curve

while the matrix A has the prescribed eigenvalues.
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Bound by Elman step by step for A normal:

‖rn‖ = ‖pn(A)r0‖ = min
p∈Πn

‖p(A)r0‖ = min
p∈Πn

‖ Y [p(Λ)Y ∗r0]‖

= min
p∈Πn

‖p(Λ)Y ∗r0‖ = min
p∈Πn

{
∑

i

| (y∗i r0) p(λi) |
2 }

1
2

≤ ‖r0‖ min
p∈Πn

max
i

|p(λi)| .

pn(λi) represents a multiplicative correction to the values of the

individual components of r0 in the orthonormal basis {y1, . . . , yN}

in order to minimize the sum of squares.
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Bound by Elman step by step for A diagonalizable:

‖rn‖ = ‖pn(A)r0‖ = min
p∈Πn

‖p(A)r0‖ = min
p∈Πn

‖ Y [ p(Λ)Y −1r0]‖

≤ ‖Y ‖ min
p∈Πn

‖p(Λ)Y −1r0‖ = ‖Y ‖ min
p∈Πn

{
∑

i

| [Y −1r0]i p(λi) |
2 }

1
2

≤ ‖Y ‖ ‖Y −1r0‖ min
p∈Πn

max
i

|p(λi)|

≤ ‖r0‖ κ(Y ) min
p∈Πn

max
i

|p(λi)| .
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For a general Y , some of the components Y −1r0 can become

very large. In such case Y [ p(Λ)Y −1r0] represents a significant

cancelation. The minimization problem

‖rn‖ = min
p∈Πn

‖ Y [ p(Λ)Y −1r0]‖

reflects that, while the term in the bound

‖Y ‖ min
p∈Πn

‖ p(Λ)Y −1r0 ‖

does not (cf. [Trefethen-97]).
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The problem of “constants” in the bounds of the type

‖ rn ‖ ≤ C(A, r0) F (sp(A), n) .

If conclusion is based only on F (sp(A), n) and the dependence

of C(A, r0) on the data is not included, then the bound must

hold for any data. Consequently, the bound is for any finite

dimensional problem irrelevant, otherwise we get a contradiction

with the Theorem.

21



The bound Const F (sp(A), n) does not intersect the rectangle

(1,0) − (1, n) − (0, n) − (0,0) .

all the GMRES
curves inside

‖rn‖
‖r0‖

iteration

all Const F (sp(A), n)

bounds

outside
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2.4.4 Pathological initial residuals?

This skeptical view seems to be in conflict with the common

wisdom – convergence is commonly related to eigenvalue dis-

tribution even for general matrices without examining eigenvec-

tors. The proved facts should not be ignored (even a common

knowledge can be wrong), but they should be understood and

interpreted correctly! There are good reasons for linking conver-

gence to eigenvalues in many cases, but the reasons must be

given and examined (contrary to common practice).

The role of “pathological initial residuals”; just academic exam-

ples ? Not true. Convection-diffusion examples were described

by Trefethen long ago, see also [Ernst - 00].
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2.4.5 Convection-diffusion model problem

Convection dominated: ν ≪ ‖w‖
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Discretization

• regular h × h grid, h = 1/(N + 1) , bilinear finite elements,

mesh Peclet number Ph ≡ (h‖w‖)/(2ν) ;

• Ph > 1 , then Galerkin discretization produces wiggles (non-

physical oscillations near the boundary layers);

• Streamline Upwind Petrov Galerkin (SUPG) equivalent to

adding stabilizing diffusion in the direction of the flow (wind);

• wind parallel to the mesh; here the vertical wind

w = [0,1]T .
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With our choice of w, the differential equation is separable, and

the eigendecompozition of the discretized operator is known an-

alytically.
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Consider the mass (M) , stiffness (K) and gradient (C)

matrices of the corresponding 1D convection-diffusion model

problem discretized using linear elements with the mesh size h,

M =
h

6
tridiag (1,4,1) , K =

1

h
tridiag (−1,2,−1) ,

C =
1

2
tridiag (−1,0,1) .

Let ‘ ⊗ ’ denote the Kronecker product of matrices.
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Then the 2D SUPG discretized N2 × N2 (operator is for the

horizontal line ordering of unknowns

AH = νM ⊗ K + ((ν + δh)K + C) ⊗ M ,

for the vertical line ordering of unknowns

AV = νK ⊗ M + M ⊗ ((ν + δh)K + C) .

AH and AV are orthogonally similar,

AV = P AH P , P = [I ⊗ e1, . . . , I ⊗ en] , P = PT , P2 = I .
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≈ optimal stabilization parameter δ∗ ≡ 1
2

(

1 − 1
Ph

)

affects

• smoothing of the discretized solution,

• behavior of the linear algebraic solver (convergence behavior

of GMRES).

Examples of boundary conditions:

• Raithby (discontinuous inflow),

• partial right side of the domain.

29



0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

x−axisy−axis

so
lu

tio
n

30



0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

x−axisy−axis

so
lu

tio
n

31



Long list of authors, papers and books

Brooks, Hughes, Raithby, Roos, Stynes, Tobiska, Morton, Ax-

elsson, . . .

GMRES convergence studied using the field of values and the

eigendecompozition of the system matrix in particular by

[Eiermann - 89], [Ernst - 00], [Eiermann, Ernst - 02], [Fisher,

Ramage, Silvester and Wathen - 99], [Elman, Ramage - 01, 02].

Different approach suggested in [Liesen, S - 04], [Liesen, S - 05].
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Eigendecompozition of AH (AV ) does not lead to useful bounds

due to the ill-conditioned eigenvectors and cancelation. Instead:

The matrices K and M are symmetric tridiagonal Toeplitz.

The matrix of eigenvectors

U = [u1, . . . , uN ], U = UT , U2 = I

uj = (2h)1/2 [sin(jhπ), . . . , sin(Njhπ)]T , j = 1, . . . , N ,

represents the Fourier basis. Consider the Fourier transformation

of unknowns in the direction perpendicular to the wind. Subse-

quent reordering of the transformed unknowns by vertical lines

gives

P (I ⊗ U)AH (I ⊗ U)P P (I ⊗ U)xH = P (I ⊗ U) bH .
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The transformation above corresponds to the simultaneous di-

agonalization of the symmetric tridiagonal Toeplitz blocks in the

block tridiagonal matrix AH , with the subsequent permutation

of the rows and columns.

The approach using AV xV = bV is even more straight, AH was

used here for historical reasons. Resulting system:

Ty = f
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T = diag (Tj) , Tj = tridiag (γj, λj, µj) , j = 1, . . . , N .

Thus, the original discretized system transformes to N non-

symmetric tridiagonal Toeplitz systems

Tj yj = fj , j = 1, . . . , N

representing N discretized one-dimensional convection-diffusion

problems (in the vertical direction of the original mesh, but ac-

counting for the diffusion in the horizontal direction).
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GMRES convergence behavior:

‖rn‖
2 = min

p∈Πn
‖ p (A) b ‖2 = min

p∈Πn
‖ p (T ) f ‖2= min

p∈Πn

N
∑

j=1

‖ p (Tj) fj ‖
2 .

GMRES for non-symmetric tridiagonal Toeplitz systems? In-

teresting case: the superdiagonal (µj) substantially smaller in

magnitude than the two others, |γj| ≈ λj ≫ µj . Relating the

problem for Tj, fj to convergence of GMRES for scaled Jordan

blocks, we proved (and quantified)

Theorem

Let l be the index of the first significant nonzero entry in fj .

Let |γj| ≈ λj ≫ µj . Then GMRES for Tjyj = fj must converge

slowly for at least N − l steps.
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Slow initial convergence:

‖rn‖
2 = min

p∈Πn

N
∑

j=1

‖ p (Tj) fj ‖
2 ≥

N
∑

j=1

min
p∈Πn

‖ p (Tj) fj ‖
2 .

If the theorem applies at least for one j, then the convergence

of GMRES for A x = b must be slow for at least N − l steps.

Acceleration of convergence:

The technique developed in [Greenbaum, Duintjer Tebbens and

S - 05?] leads to tight upper and lower bounds which capture

the sharp convergence acceleration.
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Nonzero boundary conditions on the full right side of the domain,

GMRES convergence for the whole system (solid line) and for

the individual tridiagonal Toeplitz blocks.
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Nonzero boundary conditions on the part of the right side of the

domain, GMRES convergence for the whole system (solid line)

and for the individual tridiagonal Toeplitz blocks.
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Discontinuous inflow boundary conditions (Raithby), two differ-

ent values of the diffusion coefficient ν = 0.01 and ν =

0.0001 correspond to the solid and to the dashed line, respec-

tively.
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σjk = λj + (γj µj)
1/2 ωk , ωk = 2cos (khπ), k = 1, . . . , N .

Which spectrum corresponds to which convergence curve?

λj > 0 , γj µj < 0 .
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GMRES Convergence curve, upper and lower bounds for

ν = 0.01 .
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GMRES Convergence curve, upper and lower bounds

for ν = 0.0001 .
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Concluding remarks

• initial phase is important, it depends on the right hand side!

• technique: orthonormal transformation to Jordan-like-structure

(the problem is diagonalizable!)

• generalizations? Many ways . . . ?

• analytical study of preconditioning?
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