
Chapter two

Convergence (Behavior)

in Exact Arithmetic

We start with preliminaries.
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1. Convergence (better behavior)

2. Hermitian case

3. Non-Hermitian, but normal case

4. Nonnormal case
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2.1 Convergence (better behavior)

Convergence of iterative methods:

x0, x1, . . . , xn −→ x, size of the error ‖x − xn‖ .

Nonlinear problems:

lim
n→∞

‖x − xn‖

‖x − xn−1‖p
= const < 1 .
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Linear stationary methods of the first order

xn = xn−1 +M−1(b−Axn−1), Mxn = Nxn−1 + b, A = M−N .

Richardson, Jacobi, Gauss-Seidel, SOR, SSOR

[Young - 51], [Varga - 62], [Young - 71], [Hageman, Young - 81],

[Axelsson - 94]

Description of convergence? Linearization at infinity! After some

transition phase the iterates converge with an almost linear rate

predicted by the asymptotic convergence factor.

The description of convergence is linear.
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x−xn = (I−M−1A)(x−xn−1); ‖x−xn‖ ≤ ‖(I−M−1A)n‖‖x−x0‖ .

Asymptotic convergence:

lim
n→∞

(

‖x − xn‖

‖x − x0‖

)
1
n

= lim
n→∞

‖(I − M−1A)n‖
1
n = ρ ,

where ρ is equal to the spectral radius of (I − M−1A) .

Asymptotically,

‖x − xn‖ ≈ ρn ‖x − x0‖ .
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In our course ‖ · ‖ ≡ ‖ · ‖2 . In general it may happen

ρ < 1 < ‖I − M−1A‖ .

Then the norm of the error may grow for some number of steps,

before it eventually start to decrease. Related problems on how

many steps we need to find whether ρ < 1 from the behavior of

‖(I −M−1A)n‖ were studied by Pták, which led to the theory of

the critical exponent.

ρ alone is not sufficient to describe the transient behavior, unless

M−1A is normal. Then ρn = ‖(I − M−1A)n‖ , and the power

of the spectral radius gives the tight upper bound for the norm

of the error from the first step.
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Chebyshev semiiterative method

Suppose that x1, . . . , xn have been generated via the linear

stationary method of the first order. Define

yn =
n

∑

i=0

ν
(n)
i xi ,

n
∑

i=0

ν
(n)
i = 1 .

Then a simple calculation gives

‖x − yn‖ = ‖ϕn(I − M−1A) (x − x0)‖ ≤ ‖ϕn(I − M−1A)‖ ‖x − x0‖ .

Assume that I − M−1A is Hermitian with the eigenvalues be-

tween α and β . Then minimizing the bound for the norm

of the matrix polynomial using the information on the interval

containing the spectrum leads to the Chebyshev method.

[Golub, Varga - 1961], [Varga - 1962]
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Please note that ϕ(1) = 1 .

For the Richardson iteration M = I . Rearranging pn(A) ≡

ϕn(I − A) , we get the condition pn(0) = 1 . The polynomial

ϕn , and so pn , is determined from the shifted and normalized

Chebyshev polynomial.

The method needs a-priori information about the interval con-

taining the spectrum (with the Richardson iteration the matrix

must be positive definite). The Chebyshev method does not use

any information about distribution of the eigenvalues within the

given interval – it aims at minimizing the norm of the matrix

polynomial.
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Krylov subspace methods:

Kn ≡ Kn(A, r0) ≡ span {r0, · · · , An−1r0} .

xn ∈ x0 + Kn(A, r0) ,

x − xn = pn(A) (x − x0) ,

rn ≡ b − Axn = pn(A) r0

∈ r0 + AKn(A, r0) , pn(0) = 1 .
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Generalization of the asymptotic convergence factor idea?

Let S be a compact set in the complex plane not containing zero

and not separating it from the point at infinity. The asymptotic

estimated convergence factor associated with S is defined by

En(S) ≡ min
p∈Πn

max
z∈S

| p(z) |, ρ(S) = lim
n→∞

(En(S))
1
n < 1 .

How to link with convergence of Krylov subspace methods and

how the important set S should be chosen?

In order to be relevant, it assumes a large number of steps.
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In practical applications, preconditioned Krylov subspace meth-

ods search for the sufficiently accurate approximate solution of

the finite dimensional problem in a small number of steps (much

smaller than the system dimension).

”Convergence” must be understood differently from the classical

iterative methods [Hackbush - 94]. We must study the behavior

from the very beginning. No limit, no escape to infinity. We

are interested in the transition period itself [Driscoll, Toh and

Trefethen - 98].
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In early iterations convergence behavior can strongly depend on

the initial residual (right hand side). Consequently, no analysis

based on the operator (system matrix) only can be sufficient for

achieving a complete understanding.

Very complex phenomenon. In general, no single approach is

sufficient.

Role of the most frequently used eigenvalue - eigenvector struc-

ture in relation to the particular initial residual ?
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Nick Trefethen [Trefethen-97]:

Any use of eigenvalues to derive physical predictions relies on an

implicit transformation to eigenvector coordinates. If the matrix

is (even moderately) far from normal, the change to eigenvector

coordinates may involve an extreme distortion with a superpo-

sition of huge eigen-components that nearly cancel. The state

of the system may be determined by the pattern of cancellation,

rather than by the size of the individual eigen-components.

Without further transformation the eigenvalue - eigenvector struc-

ture can in such cases hardly be useful!
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Spectral decompositions

A Hermitian: A = UΛU∗ , UU∗ = U∗U = I , Λ = Λ̄ .

A Normal: A = UΛU∗ , UU∗ = U∗U = I .

A Diagonalizable: A = X ΛX−1 .

A General: A = S J S−1 .

Goal: Show the difference in our understanding when the system

matrix changes from Hermitian to general nonnormal.

14



Chapter 2: Convergence (behavior)

in exact arithmetic

2.2 Hermitian case
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2.2.1 Basic relationships

Lanczos basis of Kn(A, r0)

AQn = QnTn + βn+1qn+1 eT
n , Qn = [q1, . . . , qn] .

Three–term recurrence for generating orthonormal basis of Krylov

subspaces

A Qn = Qn +
Tn

O
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Tn =

















α1 β2
β2 α2

. . . . . . . . .

βn

βn αn

















Jacobi matrix

Tn = Sn Θn S∗
n ,

Θn = diag (θ
(n)
1 , . . . , θ

(n)
n ) ,

Sn = [s
(n)
1 , . . . , s

(n)
n ], S∗

nSn = SnS∗
n = I .
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Relation to orthogonal polynomials

qn+1 = ψn(A) q1 / (β2β3 . . . βn+1) ,

{1, ψ1, . . . , ψn} are monic orthogonal polynomials wrt

(ϕ, ψ) =
N
∑

i=1

ωi ϕ(λi)ψ(λi) , ωi = (ui, q1)
2 .
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ψn : ‖ ψn(A) q1 ‖2 = min
ψ∈Mn

‖ ψ(A) q1 ‖2 ,

↓

N
∑

i=1

(ui, q1)
2 ψ2

n(λi) = min
ψ∈Mn

n
∑

i=1

(ui, q1)
2 ψ2(λi) .
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Riemann-Stieltjes integral

N
∑

1

ωif(λi) =
∫ ξ

ζ
f(λ)dω(λ) ,

ω(λ) = 0 ζ ≤ λ < λ1 ,

ω(λ) =
l

∑

j=1

ωj λl ≤ λ < λl+1 ,

ω(λ) =
N
∑

j=1

ωj λN ≤ λ ≤ ξ .
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Piecewise constant distribution function ω(λ) with the finite

number of points of increase, recall the spectral decomposition

of the corresponding operator,

...

0

1

ω1

ω2
ω3

ω4

ωN

ζ λ1λ2 λ3
. . . . . . λN ξ
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Repeating the argument for the matrix Tn with the initial vector

e1 :

Tn is determined by the Lanczos process for the matrix Tn and

the starting vector e1 , the monic polynomials {1, ψ1, . . . , ψn}

are orthogonal with respect to

(ϕ, ψ)n =
n

∑

i=1

ω
(n)
i ϕ

(

θ
(n)
i

)

ψ

(

θ
(n)
i

)

, ω
(n)
i =

(

s
(n)
i , e1

)2
.
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The n-th Riemann-Stieltjes integral,

n
∑

i=1

ω
(n)
i f

(

θ
(n)
i

)

=
∫ ξ

ζ
f(λ) dω(n) (λ) ,

ω(n)(λ) = 0 ζ ≤ λ < θ
(n)
1 ,

ω(n)(λ) =
l

∑

j=1

ω
(n)
j θ

(n)
l ≤ λ < θ

(n)
l+1 ,

ω(n)(λ) =
n

∑

j=1

ω
(n)
j θ

(n)
n ≤ λ < ξ .

24



Lanczos process:

• sequence of orthonormal vectors {q1, . . . , qn}

• sequence of Jacobi matrices {T1, . . . , Tn}

• sequence of monic orthogonal polynomials {1, . . . , ψn}

• sequence of R-S integrals with {ω(1), . . . , ω(n)}

• sequence of continued fractions {C1, . . . , Cn}
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Relationship between the original

∫ ξ

ζ
f(λ) dω(λ)

and the n-th R-S integral
∫ ξ

ζ
f(λ) dω(n)(λ) =

n
∑

i=1

ω
(n)
i f

(

θ
(n)
i

)

is nothing but the Gauss Quadrature !

The Lanczos process determining the orthonormal basis of Krylov

subspaces is therefore the matrix formulation of the Gauss quadra-

ture. [S, Tich y - 02], [S, Liesen - 05]
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Conjugate gradient method (CG)

‖x − xn‖A = min
u∈x0+Kn(A,r0)

‖x − u‖A

• min
z∈Kn(A,r0)

‖(x − x0) − z‖A ,

• x − xn = (x − x0) − zn ⊥A Kn(A, r0) ,

• rn = b−Axn = A(x−xn) ⊥ Kn(A, r0) , rn ⊥ span {q1, . . . , qn} .
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The CG approximation is determined by

0 = QT
n (b − Axn) = ‖r0‖e1 − QT

nAQn yn ,

xn = x0 + Qn yn, Tn yn = ‖r0‖ e1 .

Consequence:

Again, the essence of CG is nothing but Gauss quadrature! Ev-

erything is determined by ω(λ) . The way the eigenvalues are

linked to convergence is given by the way ω(λ) determines the

individual ω(n)(λ) .

This relationship is all but trivial !
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The essence of the CG method

Ax = b , x0 −→
∫ ξ

ζ
f(λ) dω(λ)

↑ ↑

Tn yn = ‖r0‖ e1 ←→
n

∑

i=1

ω
(n)
i f

(

θ
(n)
i

)

xn = x0 + Qn yn

Gauss quadrature !

ω(n) −→ ω(λ)
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2.2.2 Characterization of convergence

Conjugate gradient method, A Hermitian positive definite

• ‖ x − xn ‖A = ‖ b − Axn ‖A−1 minimal

• xn = x0 + Qn yn, Tn yn = ‖ r0 ‖ e1

• ‖ rCG
n ‖A−1 / ‖ rCG

0 ‖A−1 ≤ min
p∈Πn

‖ p(A) ‖ = min
p∈Πn

max
i

|p(λi)|
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Miminal residual method (MINRES), A Hermitian

• ‖ b − Axn ‖ minimal

• xn = x0 + Qn yn,

where ‖‖ r0 ‖ e1 − Tn+1,n yn ‖ = min
y

‖‖ r0 ‖ e1 − Tn+1,n y ‖

• ‖ rM
n ‖ / ‖ rM

0 ‖ ≤ min
p∈Πn

‖ p(A) ‖ = min
p∈Πn

max
i

|p(λi)|

Here Tn+1,n represents the upper Hessenberg tridiagonal matrix

obtained from Tn,n by appending a row [0, . . . ,0, βn+1] .
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Please notice that ‖ rCG
n ‖A−1, ‖ rCG

n ‖A−2 and ‖ rM
n ‖ decrease

monotonically, but ‖ rCG
n ‖ does not. The CG residual can

exhibit erratic behavior or increase in norm until the last step!

[Hestenes and Stiefel - 52], [Gutknecht, S - 01]

‖ rCG
n ‖ =

‖ rM
n ‖

√

1 −
(

‖ rM
n ‖ / ‖ rM

n−1 ‖
)2

[Cullum, Greenbaum - 96], (previously [Brown - 91] for FOM –

GMRES). Residual as a measure of convergence for CG? For a

HPD system, MINRES is strictly monotonic.
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Conclusion : All is determined by the eigenvalues and by the

components of the initial residual in the individual (invariant)

eigenspaces. The last factor can play a significant role only if

the individual components differ in magnitude.

[Beckerman, Kuijlaars – 01], [Liesen, Tichý - 04]

The value of the bound is known analytically [Greenbaum - 79],

though in a rather complicated form

min
p∈Πn

max
i

|p(λi)| =





n+1
∑

j=1

n+1
∏

k=1,k 6=j

|µk|

|µk − µj|





−1

,

where {µ1, . . . µn+1} is some subset of the distinct eigenvalues

of A .
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2.2.3 Ritz values

Roots of the normalized Lanczos polynomial (which is equivalent

to the CG polynomial)

pCG
n (µ) = ψn(µ)/ψn(0)

are given by the eigenvalues of Tn i.e. Ritz values. Roots of

the MINRES polynomial are harmonic Ritz values.

[Paige, Parlett and van der Vorst - 95]

Convergence of Ritz values (harmonic Ritz values) explains the

acceleration of convergence of CG (MINRES).

[van der Sluis, van der Vorst - 86]
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2.2.4 Matrix pol. and worst case bound

For CG and MINRES, minimizing the matrix polynomial (inde-

pendent on the initial residual) gives the worst case bound. The

worst case initial residual may differ for different n . MINRES

example – for each n ,

‖rn‖

‖r0‖
= min

p∈Πn
‖ p(A)q1 ‖ ≤ max

‖q‖=1
min
p∈Πn

‖ p(A)q ‖ = min
p∈Πn

‖ p(A) ‖ .
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2.2.5 Minimal polynomial idea can mislead

Linear bounds based on the Chebyshev method, see, e.g., [Fis-

cher - 96], [Saad, van der Vorst - 00],

‖x − xn‖A

‖x − x0‖A
≤ 2







√

κ(A) − 1
√

κ(A) + 1







n

can not be identified, except for some special cases, with the

true behavior of the CG method. Various misleading conclusions

about “complexity of CG” (which, in addition, totally ignore

delays due to rounding errors . . . ).
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Unless κ(A) is close to one, the distribution of eigenvalues

between the maximal and minimal ones (not only κ(A)) is im-

portant;

(here we can see a trouble with the term ”preconditioning”).
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The minimal polynomial idea is often linked with several tight

clusters of eigenvalues. Representing each cluster with a single

point, it is believed that the polynomial having roots at these

points (a single root within each cluster) gives a good approxi-

mation to the minimal polynomial. Consequently, it is believed

that a good approximate solution should be obtained in m steps,

where m is the number of clusters.

The idea is applied to general Krylov subspace methods. How-

ever, without considering the distribution of clusters together

with their diameter, the general statements, though found in

good references, are incorrect even for the Hermitian positive

definite case and in exact arithmetic.

The trouble has nothing to do with non-normality!
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Quiz:

A Hermitian, positive definite, exact precision.

Do the following characterizations of eigenvalue distribution guar-

rantee fast convergence of CG, i.e., a reasonably accurate (with

the relative error, say, 10−4) approximate solution in t + few

(fixed number) steps?

1. Cluster arround one & t large eigenvalues.

2. Cluster arround one & t tight clusters of large eigenval-

ues, with diameters of the clusters bounded by, say, 10−12.
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Consider, e.g., a polynomial

p(λ) = (1/221)(λ − 1)(λ − 2) · · · (λ − 64) :
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The minimization property determining the CG polynomial en-

forces redistribution of roots.
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In the presence of well separated clusters of large eigenvalues the

CG polynomial places multiple roots in single clusters.

When single eigenvalues are replaced by tight clusters (or, vice

versa, when tight clusters are represented by single points), the

behavior of CG in exact arithmetic can change dramatically, in

dependence on the interplay between the distribution and the

diameters of the clusters. Surprisingly, we will hear more on this

in the part on numerical stability analysis of CG.

In contrast to simpler iterative methods, including the Cheby-

shev method, CG in each iteration uses the complete information

about the spectrum.
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Example - well separated cluster of large eigenvalues affect the

values of the CG polynomial at the smallest eigenvalues, see the

detail:
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When CG is not much better than Chebyshev? When the spec-

tral information is determined locally (e.g. the spectrum is close

to uniform).
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2.2.6 Measuring convergence

The CG example

Given x0, r0 = b − Ax0, p0 = r0

For n = 1,2, . . .

γn−1 = (rn−1, rn−1)/(pn−1, Apn−1)

xn = xn−1 + γn−1 pn−1

rn = rn−1 − γn−1 Apn−1

δn = (rn, rn)/(rn−1, rn−1)

pn = rn + δn pn−1.
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For most elliptic PDE, a natural measure of convergence in solv-

ing the discretized problem is ‖x − xn‖A .

The idea of estimating ‖x − xn‖A at the price of d extra steps

comes from [Golub, S - 94]. It was developed into a practical

algorithm in [Golub, Meurant - 97],

‖x − xn‖
2
A = EST2 + ‖x − xn+d ‖2A .

When ‖x − xn‖2A ≫ ‖x − xn+d ‖2A , EST gives a tight (lower)

estimate for ‖x − xn‖A, with the inaccuracy determined by

‖x − xn+d ‖A .
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Mathematically equivalent formulas for EST2 :

[Golub, S - 94], [Golub, Meurant - 97] ‖r0‖
2 [Cn+d − Cn ]

[Warnick - 00] rT
0 (xn+d − xn)

[Hestenes, Stiefel - 52], after fifty years found and extended in

[S, Tichý 2002, 04] with justification for finite precision compu-

tations

EST2 =
n+d−1

∑

l=n

γl ‖rl‖
2
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R. Kouhia, collection Cylshell, N = 90449, κ(A) = 3.62e + 11
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Incomplete Choleski preconditioned CG, convergence character-

istics and estimate for the A-norm of the error
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Estimates for the relative A-norm of the error with different

values of the parameter d
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