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IDEALLY

≡ IN EXACT ARITHMETIC

COMPUTATIONALLY

≡ IN FINITE PRECISION ARITHMETIC
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Introduction

Analysis of Krylov subspace methods (KSM)

Goal: To get some understanding when and why things work,

and when and why they do not.

This is different from solving some particular problem, though,

ultimately, the goal is to solve practical problems, and the anal-

ysis should serve this goal.
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Preconditioning example

We do not analyze preconditioning, though it is the key part of

practical KSM computations

• Ideally: preconditioning is included (analysis applied to the

preconditioned system) . . . to some extent

• In order to understand preconditioning, we must understand

the basic method first

• Preconditioning . . . better acceleration

([Hageman, Young - 81])
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Limitations

I will attempt to present a picture, to the best of my abilities

consistent and compact.

• It will definitely be incomplete.

• It will definitely be a personal view, regardless how fair I

wish to be to the work of all distinguished developers and

contributors.
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Your role

To overcome the limitations by being critical to any point of

view, position, argument and result presented in my contribution.

Please judge their relevance, importance and correctness. Take

what is good, and tell us what you doubt or disagree with.
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Content

1. Principles and tools

2. Convergence (behavior) in exact arithmetic

3. Numerical behavior - general considerations

4. Numerical behavior - short recurrences

5. Numerical behavior of GMRES
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6. Open problems



Chapter one

Principles and Tools
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1. The principle of Krylov Subspace methods

2. Direct and iterative

3. . . . a linear problem?

4. Minimal polynomial idea

5. Orthogonality

6. Initial guess and measuring convergence
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1.1 The principle of KSM

We start with solving a real-world problem and assume a typical

case modeled by integro-differential equations (in other cases the

situation is similar).

Real problem –

modeling – discretization – computation.
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All steps should be considered a part of a single problem.

The numerical method can display behavior which is qualitatively

wrong due to

• discretization error

(numerical chaos, see [Baxter, Iserles - 03, p. 19];

convection-diffusion problems, see [Elman, Ramage - 01]),

• computational error.
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Linear FEM discretization of the Raithby convection-diffusion

model problem (plot from FEMLAB) gives qualitatively wrong

solution
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Linear FEM SUPG discretization of the Raithby convection-

diffusion model problem (plot from FEMLAB) gives a stabilized

solution, at the price of some artificial smoothing
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Principle of KSM

Projections of the N-dimensional problem onto nested Krylov

subspaces of increasing dimension.

Step n : Model reduction from dimension N
to dimension n, n ≪ N .
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A x = b

An xn = bn

xn approximates the solution x

using the subspace of small dimension.
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Projection processes

xn ∈ x0 + Sn, r0 ≡ b − Axo

where the constraints needed to determine xn are given by

rn ≡ b − Axn ∈ r0 + ASn, rn ⊥ Cn .

Here Sn is called the search space, Cn is called the constraint

space.

r0 decomposed to rn + the part in ASn . It should be

called orthogonal projection if Cn = ASn , oblique otherwise.
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Krylov subspace methods:

Sn ≡ Kn ≡ Kn(A, r0) ≡ span {r0, · · · , An−1r0}.

xn ∈ x0 + Kn(A, r0) ,

x − xn = pn(A) (x − x0) ,

rn ≡ b − Axn = pn(A) r0

∈ r0 + AKn(A, r0) , pn(0) = 1 .

More general setting possible.
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Krylov subspaces tend to contain the dominant information of A

with respect to r0. Unlike in the power method for computing

the dominant eigenspace, here all the information accumulated

along the way is used [Parlett - 80, Example 12.1.1].

Discretization means approximation of a continuous problem by

a finite dimensional one. Computation using Krylov subspace

methods means nothing but further model reduction. Well-tuned

combination has a chance for being efficient.

The idea of Krylov subspaces is in a fundamental way linked with

the problem of moments.
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In Stieltjes’ formulation, a sequence of numbers ξk, k = 0,1, . . . ,

is given and a non-decreasing distribution function ω(λ), λ ≥ 0,

is sought such that the Riemann-Stieltjes integrals satisfy

∫ ∞

0
λkdω(λ) = ξk, k = 0,1, . . . .

Here
∫∞
0 λkdω(λ) represents the k-th moment of the distribu-

tion function ω(λ).

[Shohat, Tamarkin - 43], [Akhiezer - 65], [Karlin, Shapley - 53]
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Vector moment problem of Vorobyev:

Find a linear operator An on Kn such that

An r0 = Ar0 ,

An (Ar0) = A2r0 ,
...

An (An−2r0) = An−1r0 ,

An (An−1r0) = Qn (Anr0) ,

where Qn projects onto Kn orthogonally to Cn.

[Vorobyev - 65], [Brezinski - 97]
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Please notice that here Anr0 is decomposed into the part

Qn (Anr0) ∈ Kn and a part orthogonal to Cn .

Therefore Qn is the orthogonal projector if Cn = Kn ,

oblique otherwise.
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1.2 Direct and iterative

• Some practitioners: when enough computer resources are

available, then direct methods should be preferred to itera-

tive. They compute accurately.

• If our goal is to improve methodology for solving given prob-

lem, then the questions about having or not having enough

computer resources do not make sense.

• The statement should be read: “We wish to focus on a

particular step and not to be disturbed by possible problems

of the other steps.”
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• ”and” means combination for eliminating the disadvantages

and strengthening the advantages.

• Principal advantage of the iterative part is the possibility of

stopping the computation at the desired accuracy level.

• It requires a meaningful stopping criterion. The errors of

the model, discretization error and the computational error

should be of the same order.

• Due to difficulties with the previous point this (potential)

principal advantage is often presented as a disadvantage (a

need for a stopping criteria . . . ).
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The point was presented by the founding fathers, it is well un-

derstood in the context of multilevel methods. But it is not ac-

cepted in practical computational mathematics in general. See

the following quote from a negative referee report:

”... the author give a misguided argument. The main advantage

of iterative methods over direct methods does not primarily lie

in the fact that the iteration can be stopped early [whatever

this means], but that their memory (mostly) and computational

requirements are moderate.”
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Validation

Verification

[Babuška - 03], [Oden et al - 03]
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1.3 . . . a linear problem?

Methods and phenomena in NLA need not be linear!

How fast we get an acceptable approximate solution?

• In modern iterative methods we have to study transient phase
(early stage of computation) which represents a nonlinear
phenomenon in a finite dimensional space of small dimen-
sionality. [Pták, Trefethen, Baxter and Iserles, ... ]

• Operator approach can not describe the transient phase! Lin-
earization by asymptotic tools is (even with adaptation) of
limited use.
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Another look

An information-based argument: A−1 uses global information

from A. Consequently, good iterative solution requires that:

• Either the global information is taken care for by a good pre-

conditioner. An extremely good preconditioner, transforming

the system matrix almost to identity, reduces the number of

iterations to O(1)

• Or the global information is gathered together by many (close

to N) matrix-vector multiplications.

What is wrong?
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Solving Ax = b for some particular meaningful b can be different

from solving the system with the matrix A and some worst-case

right hand side! The data have typically some meaning and are

correlated.

For an acceptable accuracy we may not need the full global

communication.

Operator approach (in analytical considerations working with an

approximation of A−1) leads to asymptotics. Solving Ax = b for

the particular meaningful {A, b} is different from computing A−1.

[Beckermann, Kuijlaars - 02]
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1.4 Minimal polynomial idea

• rn = pn(A) r0.

If pn is the minimal polynomial of A, then xn = x.

• More thoughtfully: pn minimal polynomial of A with respect

to x − x0 (or r0 = b − Ax0), then xn = x.

• Should we focus on approximating the minimal polynomial?

In general, no! Quantification is extremely difficult. We will

see on an example of the conjugate gradient method how

easily one can be misguided to a wrong conclusion.
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• what else? Linear model reduction – extraction of the dom-

inant information as fast as possible.

Question:

When does Kn(A, r0) contain enough information about the orig-

inal N-dimensional linear algebraic problem in order to provide a

good approximate solution xn?

↓

Convergence (better Behavior).
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1.5 Orthogonality

• Refining the multidimensional information (unlike in the power

method), and computing projections from b, Ab, . . . , An−1b ?

↓

Mutual orthogonalization, or orthogonalization against some

auxiliary vectors.

Goal: getting in an affordable way a good basis (”good”

does not necessarily mean ”the best possible”)

• Practical computations means limited accuracy.
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• Computer science concept of analysis and synthesis of an al-

gorithm with computing intermediate results to an arbitrary

accuracy needed for the prescribed accuracy of the final so-

lution does not work as a general approach.

The intermediate quantities can be much less accurate than

the final computed result! We will see an example of this

surprising fact revealed by the Wilkinson work and pointed

out by Parlett, later.

• (Fixed) limited accuracy means rounding errors.
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Rounding errors in our calculations destroy orthogonality, math-

ematical structure of Krylov subspaces and the projection prin-

ciple. Is there a chance to understand finite precision iterative

processes and to estimate maximal attainable accuracy?

↓

Numerical Stability Analysis

A complicated matter. For example, an algorithm can be inher-

ently unstable due to the wrong choice of the subspaces involved,

and more accurate computing of the bases can make the overall

behaviour worse! We will see an example of a variant of GMRES.
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1.6 Initial guess and measuring convergence

Ax = b, A square, nonsingular, N by N .

Consider x0 ≡ 0 , for a good reason. Ideally, no loss of general-

ity; with a nonzero x0 replace b by b − Ax0.

Computationally, unless x0 can be based on some relevant infor-

mation ensuring x0 ≈ x (‖b − Ax0‖ ≤ ‖b‖) , the choice x0 = 0

should be preferred.
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If a nonzero x0 is used, then the possible illusion of (entirely

artificial) fast convergence should be avoided by the following

step:

Given a preliminary guess xp , determine the scaling parameter

‖r0‖ = ‖b − A(xpζmin)‖ = min
ζ

‖b − A(xpζ)‖, ζmin =
b∗Axp

‖Axp‖2
,

and set x0 = xpζmin .

[Hegedüs], [Paige, S - 02]
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How good is an approximate solution xn ?

Consider a computed approximation xn . Then

Axn = b − rn , rn = b − Axn .

Thus, −rn represents the (unique) perturbation ∆b of the

right hand side b such that xn is the exact solution of the

perturbed system.

A simple one-sided example of the perturbation theory – back-

ward error approach.
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[Goldstine, Von Neumann - 47], [Turing], [Wilkinson - 63, 65]

How good is an approximate solution x̂ of the linear algebraic

problem A x = b ?

Perturbation theory: (A + ∆A) x̂ = b + ∆b .

Normwise relative backward error: Given x̂ , construct

∆A , ∆b such that both ‖∆A‖/‖A‖ and ‖∆b‖/‖b‖ are minimal;

x̂ −→
‖∆A‖

‖A‖
=

‖∆b‖

‖b‖
=

‖b − Ax̂‖

‖b‖ + ‖A‖‖x̂‖
.
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Measuring convergence: ‖rn‖ / ( ‖b‖ + ‖A‖ ‖xn‖ ) .

We ask and answer the question

“How close is the problem (A + ∆A)xn = b + ∆b , which is

solved by xn accurately, to the original problem A x = b ?”

Perhaps this is what we need – the matrix A and the right hand

side b are inaccurate anyway.

Is the computed convergence curve close to the exact one?
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Please notice the difference between the normwise relative back-

ward error and the role of the relative residual norm.

Backward error restricted to the right hand side only is given by

‖rn‖/‖b‖ .

Moreover, for an unwise choice of x0 this may differ greatly from

the frequently used relative residual norm

‖rn‖/‖r0‖ .
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Example: Liesen, Tichý

−∆u = 32(η1 − η2
1 + η2 − η2

2)

on a unit square with zero Dirichlet boundary conditions. Exact
solution is u(η1, η2) = 16(η1η2 − η1η2

2 − η2
1η2 + η2

1η2
2) .

Linear FEM, discretization error in forming the linear algebraic
system ≈ h−2. For illustration, the stopping criterion for the
CG computation was based on the normwise relative backward
error and set to

‖rn‖

‖b‖ + ‖A‖ ‖xn‖
< h−3 .
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Discretization error u − x for h = 1/101 . The exact solution

is approximated sufficiently accurately by the MATLAB direct

solver.
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Total error u − xn with stopping tolerance for the normwise

relative backward error in CG computation set to h−3 .
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• Then the computational error does not contribute signifi-

cantly to the total error measured by the accuracy of the

computed approximate solution

• The criterion is cost–efficient. A similar reasoning based on

the relative residual norm approximately doubles the number

of iterations

• A simple example - gradient is not well approximated.

• It is desirable that the evaluation of the computational error

(and stopping criteria) is based on a physically meaningful

quantity.
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Consistency of the whole solution process

Elliptic PDE can serve as a nice example. The weak formulation

leads to a SPD bilinear form, with the energy as the quantity

in charge. The Galerkin FEM discretized problem is again SPD,

and, consequently, an algebraic iterative method consistent with

the whole solution process should minimize the energy norm of

the error of the finite-dimensional approximate solution at each

iteration step. The world makes a sense - the conjugate gradient

method represents such consistency.

For some pioneering work on ”cascadic CG” see [Deuflhard - 93

(94)]. Recently, a general theory has been built by M. Arioli and

his co-workers, see [Arioli et al. - 04].
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