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Fair comparison of the direct and iterative principle
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Combination of the direct and iterative principle

● In order to reduce the disadvantages and profit from the advantages.

● Principal advantage of the iterative part is in stopping the computation
at the desired accuracy level.

● It requires a meaningful stopping criterion. The errors of the model,
discretization error and the computational error should be of the same
order.

● Due to difficulties with the previous point this (potential) principal
advantage is often presented as a disadvantage (a need for a stopping
criteria . . . ).
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Stopping criteria and rounding error analysis
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Backward error approach
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How good is an approximate solution?

Consider a linear algebraic system Ax = b , and a computed
approximation xn . Then

Axn = b − rn , rn = b − Axn .

Thus, −rn represents the (unique) perturbation ∆b of the right hand
side b such that xn is the exact solution of the perturbed system.

A simple one-sided example of the perturbation theory – backward error
approach.
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How good is an approximate solution?

[Goldstine, Von Neumann - 47], [Turing], [Wilkinson - 63, 65]

Perturbation theory: (A + ∆A) x̂ = b + ∆b .

Normwise relative backward error:

Given x̂ , construct ∆A , ∆b such that both
‖∆A‖2/‖A‖2 and ‖∆b‖2/‖b‖2 are minimal;

x̂ −→
‖∆A‖2

‖A‖2

=
‖∆b‖2

‖b‖2

=
‖b − Ax̂‖2

‖b‖2 + ‖A‖2‖x̂‖2

.
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NRBE stopping criterion

We ask and answer the question

“How close is the problem (A + ∆A) xn = b + ∆b , which is solved by
xn accurately, to the original problem A x = b ?”

Perhaps this is what we need – the matrix A and the right hand side b are
inaccurate anyway.

Is the computed convergence curve close to the exact one?
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Relative residual stopping criteria

Difference between the normwise relative backward error and the relative
residual norm:

Backward error restricted to the right hand side only is given by

‖rn‖2/‖b‖2 .

Moreover, for an unwise choice of x0 this may differ greatly from the
frequently used relative residual norm

‖rn‖2/‖r0‖2 .
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Literature
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On the backward error

The theory and history is given elegantly by Higham, 2nd Edn., 2002:
§1.10; pp. 29–30; Chapter 7, in particular §7.1, 7.2 and 7.7;

and also by Stewart & Sun, 1990, Section III/2.3;
Meurant, 1999, Section 2.7; among others —

but this is not easily accessible to non-experts.

The original BE references are:

Rigal & Gaches, J. Assoc. Comput. Mach. 1967,
for normwise analysis (used here);

Oettli & Prager, Num. Math. 1964,
for componentwise analysis.
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Relation to stopping criteria

Explained and thoroughly discussed in

Higham, 2nd Edn., 2002, §17.5; and in
“Templates”, Barrett et al., 1995, Section 4.2.

These ideas have been used for constructing stopping criteria for years.

For example, in Paige & Saunders, ACM Trans. Math. Software 1982,
the backward error idea is used to derive a family of stopping criteria
which quantify the levels of confidence in A and b, and which are
implemented in the generally available software realization
of the LSQR method.
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Stopping criteria

General considerations, methodology and applications:

Arioli, Duff & Ruiz, SIAM J. Mat. An. Appl. 1992;
Arioli, Demmel & Duff,

SIAM J. Matrix Anal. Appl. 1989;
Chatelin & Frayssé, 1996;
Kasenally & Simoncini, SIAM J. Numer. An. 1997.

Arioli, Noulard & Russo, Calcolo, 2001;
Arioli, Loghin & Wathen, Numer. Math. 2005;
Paige & Strakoš, SIAM J. Sci. Comput. 2002;
Strakoš & Liesen, ZAMM, 2005.
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Stopping criteria

These ideas are not widely used by the applications community,
apparently because very little attention has been paid to stopping criteria
in some major numerical linear algebra or iterative methods text books, or
reference books.

It would be healthy for users and also for our
community if stopping criteria were considered
to be fundamental parts of iterative computations,
and not treated among the miscellaneous issues
(or not treated at all).
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Stopping criteria based on error estimates

An example when some more sophisticated stopping criteria may be
preferable:

(Preconditioned) Conjugate gradient method
for solving discretized elliptic self-adjoint PDEs,

see:

Arioli, Numer. Math. 2004;
Hestenes & Stiefel, J. Res. Nat. Bur. St. 1952;
Meurant, Numerical Algorithms 1999;
Strakoš & Tichý, ETNA 2002;
Strakoš & Tichý, BIT 2005.
Meurant & Strakoš, Acta Numerica 2006;
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Inaccurate data:

Normwise Backward Error Summary
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Inaccurate data – stop early!

Usually A ≈ Ã, b ≈ b̃ where Ã & b̃ are ideal unknowns. Suppose
we know α, β where

Ã = A + δA, b̃ = b + δb,

‖δA‖2 ≤ α‖A‖2, ‖δb‖2 ≤ β‖b‖2.

}

(∗)

Justification for stopping criterion: If

‖b − Axk‖2

β‖b‖2 + α‖A‖2‖xk‖2

≤ 1,

∃ δAk, δbk satisfying (∗), and

(A + δAk) xk = b + δbk.

xk the exact answer to a possible problem Ãxk = b̃.



Z. Strakoš and C. C. Paige 18

Proof

Rigal & Gaches, J. Assoc. Comp. Mach. 1967, showed: given E, f ,

ηE,f (xk) =
‖b − Axk‖2

‖f‖2 + ‖E‖2‖xk‖2

= min
η,δA,δb

{η : (A + δA) xk = b + δb,

‖δA‖2 ≤ η‖E‖2, ‖δb‖2 ≤ η‖f‖2 }.

—————————————————————–

Take E = αA, f = βb, and the result follows.
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Important refinement

η
′

E,f (xk) =
‖b − Axk‖2

‖f‖2 + ‖E‖F ‖xk‖2

= min
η
′
,δA,δb

{η
′

: (A + δA) xk = b + δb,

‖δA‖F ≤ η
′

‖E‖F , ‖δb‖2 ≤ η
′

‖f‖2 }

gives the directly applicable NRBE’ criterion
based on the Frobenius matrix norm.
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One more reference

More details can be found in

“Modified Gram-Schmidt (MGS), Least Squares,
and backward stability of MGS-GMRES”
C. C. Paige, M. Rozložník, and Z. Strakoš,

to appear in SIAM J. Matrix Anal Appl.
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Thank you for your kind attention!
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