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Comparison of the direct and iterative principle
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Combination of the direct and iterative principle

● In order to reduce the disadvantages and profit from the advantages.

● Principal advantage of the iterative part is in stopping the computation
at the desired accuracy level.

● It requires a meaningful stopping criterion. Errors due to modeling,
approximation, uncertainty and computation should be under control.

● Due to difficulties with the previous point this (potential) principal
advantage is often presented as a disadvantage
(a need for a stopping criteria . . . ).
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Stopping criteria and rounding error analysis
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Common misunderstandings

In modern iterative methods:

● Convergence - no limit, no asymptotics.

● Analysis in numerical linear algebra is highly nonlinear.

● Rounding error analysis of iterative methods is fundamental.

Symmetric case:

G. Meurant and Z. S., The Lanczos and conjugate gradient method in
finite precision arithmetic, Acta Numerica, 15, Cambridge University
Press, pp. 471–542, 2006
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Stopping criteria based on error estimates

An example when stopping criteria on the algebraic level is related to the
approximation error on the discretization level:

(Preconditioned) Conjugate gradient method
for solving discretized elliptic self-adjoint PDEs,

M. Arioli, Numerische Mathematik, 97, pp. 1-24, 2004

M. Hestenes and E. Stiefel, J. Res. Nat. Bur. St., 49, pp. 409 - 436, 1952
G. Meurant, Numerical Algorithms, 22, pp. 353–365, 1999
Z. S. and P. Tichý, Electr. Trans. on Numer. Anal., 13, pp. 56–80, 2002
Z. S. and P. Tichý, BIT Num. Math., 45, pp. 789–817, 2005
Z. S. and J. Liesen, Z. Angew. Math. Mech., 85, pp. 307–325, 2005
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Two comments on numerical stability of GMRES:

1. Simpler GMRES does not work.

2. MGS GMRES is normwise backward stable.
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Orthogonality and numerical stability in GMRES

‖rn‖ = min
u∈ x0+Kn(A,r0)

‖b − Au‖ = min
z ∈AKn(A,r0)

‖r0 − z‖

⇔ rn ⊥ AKn(A, r0) ,

Kn ≡ Kn(A, r0) ≡ span {r0, · · · , An−1r0}.

J. Liesen, M. Rozložník, and Z. S., SIAM J. Sci. Comput., 23,
pp. 1503–1525, 2002 :

Wrong choice of the basis which is used in construction of the
approximate solution can have a disastrous impact.
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Simpler GMRES

Based on the orthonormal basis of AKn(A, r0) . Define

w1 ≡ Ar0/‖Ar0‖ , v1 = r0/‖r0‖ . Then the recursive columnwise

QR factorization yields

[Av1, AWn−1] = A [v1, Wn−1] ≡ Wn Rn ,

Wn ≡ [w1, . . . , wn], WT
n Wn = In ,

span {w1, . . . , wn} = AKn(A, r0) ,

κ([v1, Wn−1]) ≤ κ(Rn) ≤ κ(A) κ([v1, Wn−1]) .
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The approximate solution

Using the orthonormal basis w1, . . . , wn of AKn(A, r0) :

xn = x0 + [v1, Wn−1] tn ∈ x0 + Kn(A, r0) ;

⇒ rn = r0 − A [v1, Wn−1] tn = r0 − WnRn tn ;

⇒ tn = (WnRn)+ r0 = R−1
n WT

n r0 .

How does this affect the numerical stability?
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The approximate solution is uncomputable

Theorem

‖rn‖

‖r0‖
= σn+1([v1, Wn]) σ1([v1, Wn]) =

2κ([v1, Wn])

κ([v1, Wn])2 + 1
,

‖r0‖

‖rn‖
≤ κ([v1, Wn]) ≤ 2

‖r0‖

‖rn‖
,

‖r0‖

‖rn‖
≤ κ(Rn) ≤ 2κ(A)

‖r0‖

‖rn‖
.
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Explanation

Consequently, κ(Rn) must inevitably increase as ‖rn‖ decreases,
even for small κ(A) and with the most stable way of computing
w1, . . . , wn.

⇒ Computation of tn = R−1
n WT

n r0 is inherently unstable!

Finite precision computation - surprise (?):

Numerical behavior gets worse when the orthogonality of w1, . . . , wn is
maintained better. The Householder implementation performs worse than
the Modified-Gram-Schmidt implementation.

The straightforward approach is used in “Simpler GMRES” [Walker, Lu
Zhou - 94], and it is related to other implementations, e.g. Orthodir.
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Classical GMRES implementation

Based on the orthonormal basis of Kn(A, r0) . Let v1 ≡ r0/‖r0‖. Then

the Arnoldi process yields

AVn = Vn+1 Hn+1,n ,

Vn ≡ [v1, . . . , vn], V T
n Vn = In ,

span {v1, . . . , vn} = Kn(A, r0) ,

κ(Hn+1,n) ≤ κ(A) .
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The problem can not occur!

Using the orthonormal basis v1, . . . , vn of Kn(A, r0) :

xn = x0 + Vn zn ∈ Kn(A, r0) ,

⇒ rn = r0 − AVn zn = r0 − Vn+1Hn+1,n zn ,

⇒ zn = (Vn+1Hn+1,n)+ r0 = (Hn+1,n)+ V T
n+1 r0 .

How does this affect the numerical stability?
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Illustration - Householder implementation
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Householder implementations of classical and simpler GMRES

FS1836(183), cond(A)=1.7367e+11

Excessive ill-conditioning of computed Rn leads in the straightforward
implementation (simpler GMRES) to divergence (dashed line).
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Illustration - MGS implementation
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MGS implementations of classical and simpler GMRES

FS1836(183), cond(A)=1.7367e+11

Due to rounding errors the (exact precision) identity is violated, and the
computed Rn is not so badly ill-conditioned as it ideally should be!
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Moral

Choice of the right basis used for construction of the approximate solution
is fundamental for numerical stability of the Krylov subspace methods.

Even the best orthogonalization technique in computation of the basis
(here Householder reflections) can not compensate for instabilities
artificially created due to a bad choice of the subspace. Paradoxically -
preserving orthogonality of the computed basis can even make things
worse!

In the rest we concentrate on the classical GMRES.
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Literature

Numerical stability of the GMRES implementation based on the (ideally)

orthonormal basis of Kn(A, r0) – some related publications:

[Björck - 67], [Karlson - 91], [Björck, Paige - 92],

[Drkošová, Greenbaum, Rozložník, S - 95], [Arioli, Fassino - 96],

[Greenbaum, Rozložník, S - 96], [Rozložník 1997],

[Paige, S - 02a, 02b, 02c],

[Giraud, Langou, Rozložník, van der Eshof - 05], ...
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Common knowledge on MGS GMRES

vn+1 = (I − vnv∗n − . . . − v1v
∗
1) Avn

= (I − vnv∗n) . . . (I − v1v
∗
1) Avn

A common belief:

MGS orthogonalization is a good compromise between propagation of
errors (loss of orthogonality) and algorithm efficiency (computational
cost). Price - the computation is recursive!

Comparison with classical Gram-Schmidt, Householder reflections,
Givens rotations.
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Another surprise

Despite the loss of orthogonality, some (good!) algorithms with MGS
provide results as good as algorithms using the most stable
orthogonalization (with the loss of orthogonality among the computed
basis vectors kept close to the machine precision level).

Theoretical justification?

● Linear least squares – direct methods: [Björck, Paige - 92];

● Our case: MGS GMRES.
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One more reference

MGS GMRES is normwise backward stable!

C. C. Paige, M. Rozložník, and Z. S., Modified Gram-Schmidt (MGS),
Least Squares, and backward stability of MGS-GMRES, SIAM J. Matrix
Anal Appl., 28, pp. 264–284, 2006
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Last figure: Sherman 2, b MM, x0 = 0
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Most important of all

Thank you, Professor Babuška, and many happy

and fruitful years!
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