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The idea of the transfer of conditions for a very general boundary value
problem for a system of differential equations with inner and transition con-
ditions originates in various methods. The present paper is devoted to a
special problem and the methods are chosen in order to exploit the addi-
tional information, above all the symmetry and some sign properties.

Consider the boundary value problem for a selfadjoint differential equa-
tion of 2nth order

n

D (D' (pai Wy ()Y =q(t)  aein (a,b), (1)

1=0

where the coefficients of the equation satisfy the following requirements:
q(t),1/po(t) € L (a,b), and p;(t) € L (a,b) for i =1,...,n.

The quasiderivatives are defined to the following manner:
Yy (1) = y® (1) for k=0,1,...m—1,
yll(t) = po(t)y™ (1), |
Yr() = py (D™D () — (ENGY, for G=1,.m.
Put x;(t) =y~ U(t) for i = 1, ...,2n and the vector z(t) = (21(t), ..., 22, (t))".
Consider the boundary condition for the differential equation (1) in the
form

Wiz(a) + Wax(b) = w, (2)

where W7 and W5 are square matrices of order 2n and the vector w has 2n
components. We divide the matrices W; and W5 into blocks:

Wl - (Bl7B2)7 W2 == (B3aB4)7



where the matrices B; (i = 1,...,4) have n columns. Let T' be the square
matrix of order n defined as

0O 0 ... 01
0O 0 ... 10
T=1.. for n > 2
0O 1 ... 00
1 0 .. 00

and T'= 1 for n =1 (i.e., the matrix has the 1’s on the adjoint diagonal and
zeros everywhere else).
Now we can formulate two known lemmas (see [6]).

Lemma 1 The necessary and sufficient condition for the problem (1), (2)
to be selfadjoint is

B\ TBI — B,TB] = BsTB] — B,TB} (3)
and rank (W, Wy) = 2n.

Lemma 2 Let p;(t) > 0 a.e.in (a,b) for i =0,...,n. The necessary and suf-
ficient condition for the selfadjoint problem (1), (2) to be positive semidefinite
1s that the matriz

B\TB} — BsTB}

1s negative semidefinite.

First we will replace the equation of the 2n-th order by the system of 2n equa-
tions of the first order in a standard way. The definition of quasiderivatives
implies that the introduced vector x(t) satisfies the differential equation

0 -1 0 .. 0 0 0 00 .. 0 0]
0 0 -1 .. 0 0 0O 00 .. 00
0 0 0 .. 0 -1 0O 00 .. 00
0 0 o .. 0 0 —=1/pp 0 0 .. 00
' (t)+ x(t) =
0 0 0 0 -p 0 1 00
0 0 0 —py 0 0 1 0 0
0 —pus O .. 0 0 0O 00 .. 01
—p. 0 0O .. 0 0 0 00 .. 0 0]




a.e.in (a,b).
That means:
() + A@t)z(t) = f(t) a.e. in  (a,b), (5)

The equation (4) is of the form (5). Let the matrix A(t) stand for the
corresponding matrix of the equation (4) and the vector f(t) stand for the
corresponding right-hand side.

Now, we transform this problem to the problem with separated boundary
conditions. Let us introduce the vector z(t):

_ 2(?)
A(t) = (x(a+b_t)>\¢t € (a,b)
We obtain for the vector function z(t) :

0r (W ) 0= o

At) f@)

a.e. in (a, “T“’) This vector function fulfils separated boundary conditions.

(W1, Ws)z(a) = w (7)
a—+b
(I,—1)z <2> = o. (8)

Theorem 1 Let D(t) be an absolutely continuous 2n x 4n matriz and d(t)
an absolutely continuous vector with 2n components, satisfying the equations

D'(t) = D(t)A(t)
d'(t) = D(t)f(t)

and the initial conditions

D(a) = (Wi, Wy),  d(a)=w,

Then
A R a+b

D(t)z(t) = d(t) foreveryt € (a, 5 ) (9)

and for every solution of the problem (6),(7).



This theorem brings us to the transfer of the left boundary condition (7) on
the whole interval <a, “TH’> . The equation (9) is called the transferred condi-

tion. We say that the matrix D(¢) and the vector d(t) realize the transfer of
the condition (7). Analogously we can formulate the theorem on the transfer
of the right boundary condition.

Theorem 2 Let é’(t) be an absolutely continuous 2n X 4n matriz and ¢é(t)
an absolutely continuous vector with 2n components, satisfying the equations

C'(t) = C(HA()
é(t)=C)f ()

and the initial conditions (this time at the point “t2)

~f(a+b Lfa+0b)
C( 5 >—([,—I), c( 5 )—0,

~

C(t)z(t) = ¢(t) foreveryt € <a, ¢ ; b>

Then

and for every solution of the problem (6),(8).

Matrix D(t) could be divided in to four blocks: D(t) = (El (t), Ds(t), Ds(t), D4(t)),
where D;(t) are (2n x n). It could be shown, that for all ¢ hold:

1. The matrix Dy (t)T DT (t) — Ds(t)TDT () is negative semidefinite

2. The rank D(t) = 2n

The properties 1, 2 imply that matrix [D(t) — Do()T, Ds(t) + Dy(t)T] is

nonsingular for all ¢ € <a, “T“’> If we multiply the transferred condition

D(t)z(t) = d(t) by the matrix
[D1(t) = D3 ()T, Ds(t) + DY ()T] " = K(t)
from the left, we obtain transferred condition in canonical form. The matrix

K(t) - [Dy(t)Ds(t)] = G(t) is symmetric with all eigenvalues in the interval
(0,1). Than

K(0)-1Da(0), D) = (1= Go) (T )



The transfer of boundary conditions is realized by finding the symmetric
matrix G(t). It is the solution of Riccati equation with all eigenvalues in the
intervalu (0,1). We denote j(£) = K(t) - d(t). Than we obtain this function
by solving certain linear equation.

Analogously we can divide the matrix C(¢) in to the blocks: C(t) =
(C’l (), Ca(t), Cs(t), 6’4(t)>, where C;(t) are (2n x n). It could be shown, that
for all ¢ hold:

1. The matrix Cy(£)TCL(t) — C3(8)T DY (¢) is positive semidefinite
2. The rank C(t) = 2n

This properties imply that matrix [Cy(t) 4+ Cy(t)T, Cs(t) — Cy(t)T] is nonsin-
gular for all ¢ € <a, “TH’> If we multiply the transferred condition C'(t)z(t) =
¢(t) by the matrix

[C1(t) + CF (DT, Cs(t) = CT(OT] ™ = L(t)

from thg left,A we obtaip transferred condition in canonical form. The matrix
L(t) - [C1(t)Cs(t)] = H(t) is symmetric with all eigenvalues in the interval
(0,1). Than

L) (G = -0 () 7).

Then we must find the symmetric matrix G(t), which is a solution of the
Riccati equation with all eigenvalues in the intervalu (0,1). Let us denote
h(t) = L(t) - &(t) . Than we obtain this function by solving certain linear
equation.

We have presented algorithms that lead to solving the Riccati differen-
tial equations and have shown that for a series of problems these equations
possess a unique solution on tho whole interval in question and, moreover,
that these equations are represented by symmetric matrices whose eigenval-
ues lie in (0, 1). The methods used so far had to check whether the solutions
to the Riccati equations exist on the whole interval in question or whether
they do not exceed some a priori given barriers, which is not necessary in our
canonical transfer of conditions.
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