Transfer of the boundary conditions for boundary value problems for selfadjoint differential equations of $2 n$th order.

Jiří Taufer,
Department of Applied Mathematics, Faculty of Transportation Sciences, CTU Prague
Prague 1, Na Florenci 25, Czech Republic
e-mail: taufer@fd.cvut.cz

The idea of the transfer of conditions for a very general boundary value problem for a system of differential equations with inner and transition conditions originates in various methods. The present paper is devoted to a special problem and the methods are chosen in order to exploit the additional information, above all the symmetry and some sign properties.

Consider the boundary value problem for a selfadjoint differential equation of $2 n$th order

$$
\begin{equation*}
\sum_{i=0}^{n}(-1)^{i}\left(p_{n-i}(t) y^{(i)}(t)\right)^{(i)}=q(t) \quad \text { a.e. in } \quad(a, b), \tag{1}
\end{equation*}
$$

where the coefficients of the equation satisfy the following requirements: $q(t), 1 / p_{0}(t) \in \mathcal{L}(a, b)$, and $p_{i}(t) \in \mathcal{L}(a, b)$ for $i=1, \ldots, n$.

The quasiderivatives are defined to the following manner:
$y^{[k]}(t)=y^{(k)}(t) \quad$ for $\quad k=0,1, \ldots, n-1$,
$y^{[n]}(t)=p_{0}(t) y^{(n)}(t)$,
$y^{[n+j]}(t)=p_{j}(t) y^{(n-j)}(t)-\left(y^{[n+j-1]}(t)\right)^{\prime}, \quad$ for $\quad j=1, \ldots, n$.
Put $x_{i}(t)=y^{[i-1]}(t)$ for $i=1, \ldots, 2 n$ and the vector $x(t)=\left(x_{1}(t), \ldots, x_{2 n}(t)\right)^{T}$.
Consider the boundary condition for the differential equation (1) in the form

$$
\begin{equation*}
W_{1} x(a)+W_{2} x(b)=w, \tag{2}
\end{equation*}
$$

where W_{1} and W_{2} are square matrices of order $2 n$ and the vector w has $2 n$ components. We divide the matrices W_{1} and W_{2} into blocks:

$$
W_{1}=\left(B_{1}, B_{2}\right), \quad W_{2}=\left(B_{3}, B_{4}\right),
$$

where the matrices $B_{i}(i=1, \ldots, 4)$ have n columns. Let T be the square matrix of order n defined as

$$
T=\left[\begin{array}{ccccc}
0 & 0 & \ldots & 0 & 1 \\
0 & 0 & \ldots & 1 & 0 \\
\ldots & & & & \\
0 & 1 & \ldots & 0 & 0 \\
1 & 0 & \ldots & 0 & 0
\end{array}\right] \text { for } n \geq 2
$$

and $T=1$ for $n=1$ (i.e., the matrix has the 1's on the adjoint diagonal and zeros everywhere else).

Now we can formulate two known lemmas (see [6]).

Lemma 1 The necessary and sufficient condition for the problem (1), (2) to be selfadjoint is

$$
\begin{gather*}
B_{1} T B_{2}^{T}-B_{2} T B_{1}^{T}=B_{3} T B_{4}^{T}-B_{4} T B_{3}^{T} \tag{3}\\
\text { and } \operatorname{rank}\left(W_{1}, W_{2}\right)=2 n .
\end{gather*}
$$

Lemma 2 Let $p_{i}(t) \geq 0$ a.e.in (a, b) for $i=0, \ldots, n$. The necessary and sufficient condition for the selfadjoint problem (1), (2) to be positive semidefinite is that the matrix

$$
B_{1} T B_{2}^{T}-B_{3} T B_{4}^{T}
$$

is negative semidefinite.

First we will replace the equation of the $2 n$-th order by the system of $2 n$ equations of the first order in a standard way. The definition of quasiderivatives implies that the introduced vector $x(t)$ satisfies the differential equation
$x^{\prime}(t)+\left[\begin{array}{cccccccccccc}0 & -1 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 & \ldots & 0 & 0 \\ 0 & 0 & -1 & \ldots & 0 & 0 & 0 & 0 & 0 & \ldots & 0 & 0 \\ \ldots & & & & & & & & & & & \\ 0 & 0 & 0 & \ldots & 0 & -1 & 0 & 0 & 0 & \ldots & 0 & 0 \\ 0 & 0 & 0 & \ldots & 0 & 0 & -1 / p_{0} & 0 & 0 & \ldots & 0 & 0 \\ \ldots & & & & & & & & & & & \\ 0 & 0 & 0 & \ldots & 0 & -p_{1} & 0 & 1 & 0 & \ldots & 0 & 0 \\ 0 & 0 & 0 & \ldots & -p_{2} & 0 & 0 & 0 & 1 & \ldots & 0 & 0 \\ \ldots & & & & & & & & & & & \\ 0 & -p_{n-1} & 0 & \ldots & 0 & 0 & 0 & 0 & 0 & \ldots & 0 & 1 \\ -p_{n} & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 & \ldots & 0 & 0\end{array}\right] x(t)=\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 0 \\ -q(t)\end{array}\right]$
a.e. in (a, b).

That means:

$$
\begin{equation*}
x^{\prime}(t)+A(t) x(t)=f(t) \quad \text { a.e. in } \quad(a, b) \tag{5}
\end{equation*}
$$

The equation (4) is of the form (5). Let the matrix $A(t)$ stand for the corresponding matrix of the equation (4) and the vector $f(t)$ stand for the corresponding right-hand side.

Now, we transform this problem to the problem with separated boundary conditions. Let us introduce the vector $z(t)$:

$$
z(t)=\binom{x(t)}{x(a+b-t)} \forall t \in\langle a, b\rangle
$$

We obtain for the vector function $z(t)$:

$$
z^{\prime}(t)+\underbrace{\left(\begin{array}{cc}
A(t) & 0 \tag{6}\\
0 & -A(a+b-t)
\end{array}\right)}_{\hat{A}(t)} z(t)=\underbrace{\binom{f(t)}{-f(a+b-t)}}_{\hat{f}(t)}
$$

a.e. in $\left(a, \frac{a+b}{2}\right)$. This vector function fulfils separated boundary conditions.

$$
\begin{gather*}
\left(W_{1}, W_{2}\right) z(a)=w \tag{7}\\
(I,-I) z\left(\frac{a+b}{2}\right)=o . \tag{8}
\end{gather*}
$$

Theorem 1 Let $\hat{D}(t)$ be an absolutely continuous $2 n \times 4 n$ matrix and $\hat{d}(t)$ an absolutely continuous vector with $2 n$ components, satisfying the equations

$$
\begin{aligned}
& \hat{D}^{\prime}(t)=\hat{D}(t) \hat{A}(t) \\
& \hat{d}^{\prime}(t)=\hat{D}(t) \hat{f}(t)
\end{aligned}
$$

and the initial conditions

$$
\hat{D}(a)=\left(W_{1}, W_{2}\right), \quad \hat{d}(a)=w
$$

Then

$$
\begin{equation*}
\hat{D}(t) z(t)=\hat{d}(t) \quad \text { for every } t \in\left\langle a, \frac{a+b}{2}\right\rangle \tag{9}
\end{equation*}
$$

and for every solution of the problem (6), (7).

This theorem brings us to the transfer of the left boundary condition (7) on the whole interval $\left\langle a, \frac{a+b}{2}\right\rangle$. The equation (9) is called the transferred condition. We say that the matrix $\hat{D}(t)$ and the vector $\hat{d}(t)$ realize the transfer of the condition (7). Analogously we can formulate the theorem on the transfer of the right boundary condition.

Theorem 2 Let $\hat{C}(t)$ be an absolutely continuous $2 n \times 4 n$ matrix and $\hat{c}(t)$ an absolutely continuous vector with $2 n$ components, satisfying the equations

$$
\begin{aligned}
& \hat{C}^{\prime}(t)=\hat{C}(t) \hat{A}(t) \\
& \hat{c}^{\prime}(t)=\hat{C}(t) \hat{f}(t)
\end{aligned}
$$

and the initial conditions (this time at the point $\frac{a+b}{2}$)

$$
\hat{C}\left(\frac{a+b}{2}\right)=(I,-I), \quad \hat{c}\left(\frac{a+b}{2}\right)=o
$$

Then

$$
\hat{C}(t) z(t)=\hat{c}(t) \quad \text { for every } t \in\left\langle a, \frac{a+b}{2}\right\rangle
$$

and for every solution of the problem (6), (8).

Matrix $\hat{D}(t)$ could be divided in to four blocks: $\hat{D}(t)=\left(\hat{D}_{1}(t), \hat{D}_{2}(t), \hat{D}_{3}(t), \hat{D}_{4}(t)\right)$, where $\hat{D}_{i}(t)$ are $(2 n \times n)$. It could be shown, that for all t hold:

1. The matrix $\hat{D}_{1}(t) T \hat{D}_{2}^{T}(t)-\hat{D}_{3}(t) T \hat{D}_{4}^{T}(t)$ is negative semidefinite
2. The rank $\hat{D}(t)=2 n$

The properties 1, 2 imply that matrix $\left[\hat{D}_{1}(t)-\hat{D}_{2}(t) T, \hat{D}_{3}(t)+\hat{D}_{4}(t) T\right]$ is nonsingular for all $t \in\left\langle a, \frac{a+b}{2}\right\rangle$. If we multiply the transferred condition $\hat{D}(t) z(t)=\hat{d}(t)$ by the matrix

$$
\left[\hat{D}_{1}(t)-\hat{D}_{2}^{T}(t) T, \hat{D}_{3}(t)+\hat{D}_{4}^{T}(t) T\right]^{-1}=K(t)
$$

from the left, we obtain transferred condition in canonical form. The matrix $K(t) \cdot\left[\hat{D}_{1}(t) \hat{D}_{3}(t)\right]=\hat{G}(t)$ is symmetric with all eigenvalues in the interval $\langle 0,1\rangle$. Than

$$
K(t) \cdot\left[\hat{D}_{2}(t), \hat{D}_{4}(t)\right]=(I-\hat{G}(t))\left(\begin{array}{cc}
-T & 0 \\
0 & T
\end{array}\right) .
$$

The transfer of boundary conditions is realized by finding the symmetric matrix $\hat{G}(t)$. It is the solution of Riccati equation with all eigenvalues in the intervalu $\langle 0,1\rangle$. We denote $\hat{g}(t)=K(t) \cdot \hat{d}(t)$. Than we obtain this function by solving certain linear equation.

Analogously we can divide the matrix $\hat{C}(t)$ in to the blocks: $\hat{C}(t)=$ $\left(\hat{C}_{1}(t), \hat{C}_{2}(t), \hat{C}_{3}(t), \hat{C}_{4}(t)\right)$, where $\hat{C}_{i}(t)$ are $(2 n \times n)$. It could be shown, that for all t hold:

1. The matrix $\hat{C}_{1}(t) T \hat{C}_{2}^{T}(t)-\hat{C}_{3}(t) T \hat{D}_{4}^{T}(t)$ is positive semidefinite
2. The rank $\hat{C}(t)=2 n$

This properties imply that matrix $\left[\hat{C}_{1}(t)+\hat{C}_{2}(t) T, \hat{C}_{3}(t)-\hat{C}_{4}(t) T\right]$ is nonsingular for all $t \in\left\langle a, \frac{a+b}{2}\right\rangle$. If we multiply the transferred condition $\hat{C}(t) z(t)=$ $\hat{c}(t)$ by the matrix

$$
\left[\hat{C}_{1}(t)+\hat{C}_{2}^{T}(t) T, \hat{C}_{3}(t)-\hat{C}_{4}^{T}(t) T\right]^{-1}=L(t)
$$

from the left, we obtain transferred condition in canonical form. The matrix $L(t) \cdot\left[\hat{C}_{1}(t) \hat{C}_{3}(t)\right]=\hat{H}(t)$ is symmetric with all eigenvalues in the interval $\langle 0,1\rangle$. Than

$$
L(t) \cdot\left[\hat{C}_{2}(t) \hat{C}_{4}(t)\right]=(I-\hat{H}(t))\left(\begin{array}{cc}
-T & 0 \\
0 & T
\end{array}\right) .
$$

Then we must find the symmetric matrix $\hat{G}(t)$, which is a solution of the Riccati equation with all eigenvalues in the intervalu $\langle 0,1\rangle$. Let us denote $\hat{h}(t)=L(t) \cdot \hat{c}(t)$. Than we obtain this function by solving certain linear equation.

We have presented algorithms that lead to solving the Riccati differential equations and have shown that for a series of problems these equations possess a unique solution on tho whole interval in question and, moreover, that these equations are represented by symmetric matrices whose eigenvalues lie in $\langle 0,1\rangle$. The methods used so far had to check whether the solutions to the Riccati equations exist on the whole interval in question or whether they do not exceed some a priori given barriers, which is not necessary in our canonical transfer of conditions.

References

[1] Taufer J.: Lösung der Randwertprobleme für Systeme von linearen Differentialgleichungen, Rozpravy eskosl. akad. vd., ada Mat. prod. vd 83, No.5, Praha 1973.
[2] Taufer J.: Solution of boundary value problems for systems of linear differential equations., Nauka, Moscow 1981. (In Russian.)
[3] Meyer G.H.: Initial value methods for boundary value problems - Theory and applications of invariant imbedding, Academic Press, New York, 1973.
[4] Reid W. T.: Riccati differential equations, Academic Press, New York, 1972.
[5] Scott M.R.: Invariant imbedding and its applications to ordinary differential equations, Addison-Wesley Publishing Company, 1973.
[6] Ahiezer, N.I., Glazman, I.M.: Theory of Linear Operators in Hilbert Space, Pitman, Boston 1981.
[7] Higham, N.J.: Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia 1996.

