
Balancing Incomplete Factorizations for Preconditioning

(Do we know standard matrix decompositions?)

Miroslav Tůma

Institute of Computer Science

Academy of Sciences of the Czech Republic

joint work with

Rafael Bru, José Marín, José Mas

Universidad Politécnica de Valencia.

Householder Symposium XVII.

June 1-6, 2008, Zeuthen, Germany

1



Outline

1 Introduction

2 Direct incomplete decompositions

3 IF via approximate inverses

4 IF with approximate inverses

5 Conclusions

2



Outline

1 Introduction

2 Direct incomplete decompositions

3 IF via approximate inverses

4 IF with approximate inverses

5 Conclusions

3



Preconditioned iterative methods

Solving large, sparse SPD systems by iterative methods

Ax = b

4



Preconditioned iterative methods

Solving large, sparse SPD systems by iterative methods

Ax = b

Algebraic preconditioning as a transformation

M
−1
Ax =M

−1
b

.

4



Preconditioned iterative methods

Solving large, sparse SPD systems by iterative methods

Ax = b

Algebraic preconditioning as a transformation

M
−1
Ax =M

−1
b

.In particular: Incomplete decompositions

4



Preconditioned iterative methods

Solving large, sparse SPD systems by iterative methods

Ax = b

Algebraic preconditioning as a transformation

M
−1
Ax =M

−1
b

.In particular: Incomplete decompositions

As usual, should be cheap, fast to compute, implying fast converging
preconditioned iterative method

4



Preconditioned iterative methods

Solving large, sparse SPD systems by iterative methods

Ax = b

Algebraic preconditioning as a transformation

M
−1
Ax =M

−1
b

.In particular: Incomplete decompositions

As usual, should be cheap, fast to compute, implying fast converging
preconditioned iterative method

but also: sufficiently robust

4



Preconditioned iterative methods

Solving large, sparse SPD systems by iterative methods

Ax = b

Algebraic preconditioning as a transformation

M
−1
Ax =M

−1
b

.In particular: Incomplete decompositions

As usual, should be cheap, fast to compute, implying fast converging
preconditioned iterative method

but also: sufficiently robust

sparse enough

4



Preconditioned iterative methods

Solving large, sparse SPD systems by iterative methods

Ax = b

Algebraic preconditioning as a transformation

M
−1
Ax =M

−1
b

.In particular: Incomplete decompositions

As usual, should be cheap, fast to compute, implying fast converging
preconditioned iterative method

but also: sufficiently robust

sparse enough

providing just sufficient approximation of the algebraic problem, and
not more if this makes computations faster.

4



Preconditioned iterative methods
Structure of the talk

Structure of this talk

5



Preconditioned iterative methods
Structure of the talk

Structure of this talk

1 Very schematic description of a couple of ideas for algebraic
preconditioning. Showing how easily they can fail.

5



Preconditioned iterative methods
Structure of the talk

Structure of this talk

1 Very schematic description of a couple of ideas for algebraic
preconditioning. Showing how easily they can fail.

2 Drawing attention to some approaches which exploit info on matrix
inverse.

5



Preconditioned iterative methods
Structure of the talk

Structure of this talk

1 Very schematic description of a couple of ideas for algebraic
preconditioning. Showing how easily they can fail.

2 Drawing attention to some approaches which exploit info on matrix
inverse.

3 Presenting an approach based on a new way to decompose the input
matrix and not on preprocessings, postprocessings, additional
frameworks or modifications

5



Outline

1 Introduction

2 Direct incomplete decompositions

3 IF via approximate inverses

4 IF with approximate inverses

5 Conclusions

6



Incomplete decompositions
Trivial paterns

Incompleteness based on pattern or on values?

7



Incomplete decompositions
Trivial paterns

Incompleteness based on pattern or on values?

A) Very simple patterns for cheap / cache-efficient preconditioners?

7



Incomplete decompositions
Trivial paterns

Incompleteness based on pattern or on values?

A) Very simple patterns for cheap / cache-efficient preconditioners?

Example: banded pattern: BCSSTK38, n = 8032, nz = 181, 746

bandwidth (full) iterations

1 426

3 821

5 648

9 1638

15 792

1011 105

1311 56

1511 †

3111 35

4111 18

7



Incomplete decompositions
Matrix-based patterns

B) Matrix-based patterns for preconditioners?

8



Incomplete decompositions
Matrix-based patterns

B) Matrix-based patterns for preconditioners?

Example: pattern of A = pattern (L+ LT ), L = tril(A)

Well known: error R of the decomposition A = LLT −R satisfies:

rij = 0 if (i, j) ∈ pattern

8



Incomplete decompositions
Matrix-based patterns

B) Matrix-based patterns for preconditioners?

Example: pattern of A = pattern (L+ LT ), L = tril(A)

Well known: error R of the decomposition A = LLT −R satisfies:

rij = 0 if (i, j) ∈ pattern

As above, error outside the prescribed pattern can be arbitrary, if (linear
system, PDE, etc.) model allows this.

8



Incomplete decompositions
Enhanced matrix-based patterns

C) Enhancing matrix-based patterns for preconditioners?

9



Incomplete decompositions
Enhanced matrix-based patterns

C) Enhancing matrix-based patterns for preconditioners?

Example: Pattern of powers of A

9



Incomplete decompositions
Enhanced matrix-based patterns

C) Enhancing matrix-based patterns for preconditioners?

Example: Pattern of powers of A

Motivated by matrix inverse

9



Incomplete decompositions
Enhanced matrix-based patterns

C) Enhancing matrix-based patterns for preconditioners?

Example: Pattern of powers of A

Motivated by matrix inverse

Well-known how powers of A are related to the decomposition

9



Incomplete decompositions
Enhanced matrix-based patterns

C) Enhancing matrix-based patterns for preconditioners?

Example: Pattern of powers of A

Motivated by matrix inverse

Well-known how powers of A are related to the decomposition

Sometimes called dropping by levels

9



Incomplete decompositions
Enhanced matrix-based patterns

C) Enhancing matrix-based patterns for preconditioners?

Example: Pattern of powers of A

Motivated by matrix inverse

Well-known how powers of A are related to the decomposition

Sometimes called dropping by levels

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

nz = 217

ILU(0)

9



Incomplete decompositions
Enhanced matrix-based patterns

C) Enhancing matrix-based patterns for preconditioners?

Example: Pattern of powers of A

Motivated by matrix inverse

Well-known how powers of A are related to the decomposition

Sometimes called dropping by levels

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

nz = 217
0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

nz = 289

ILU(0) ILU(1)

9



Incomplete decompositions
Enhanced matrix-based patterns

C) Enhancing matrix-based patterns for preconditioners?

Example: Pattern of powers of A

Motivated by matrix inverse

Well-known how powers of A are related to the decomposition

Sometimes called dropping by levels

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

nz = 217
0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

nz = 349

ILU(0) ILU(2)

9



Incomplete decompositions
Enhanced matrix-based patterns

C) Enhancing matrix-based patterns for preconditioners?

Example: Pattern of powers of A

Motivated by matrix inverse

Well-known how powers of A are related to the decomposition

Sometimes called dropping by levels

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

nz = 217
0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

nz = 457

ILU(0) ILU(3)

9



Incomplete decompositions
Enhanced matrix-based patterns

C) Enhancing matrix-based patterns for preconditioners?

Example: Pattern of powers of A

Motivated by matrix inverse

Well-known how powers of A are related to the decomposition

Sometimes called dropping by levels

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

nz = 217
0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

nz = 541

ILU(0) ILU(4)

9



Incomplete decompositions
Enhanced matrix-based patterns

C) Enhancing matrix-based patterns for preconditioners?

Example: Pattern of powers of A

Motivated by matrix inverse

Well-known how powers of A are related to the decomposition

Sometimes called dropping by levels

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

nz = 217
0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

nz = 601

ILU(0) ILU(5)

9



Incomplete decompositions
Enhanced matrix-based patterns

C) Enhancing matrix-based patterns for preconditioners?

Example: Pattern of powers of A

Motivated by matrix inverse

Well-known how powers of A are related to the decomposition

Sometimes called dropping by levels

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

nz = 217
0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

nz = 637

ILU(0) ILU(6)

9



Incomplete decompositions
Enhanced matrix-based patterns

C) Enhancing matrix-based patterns for preconditioners?

Example: Pattern of powers of A

Motivated by matrix inverse

Well-known how powers of A are related to the decomposition

Sometimes called dropping by levels

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

nz = 217
0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

nz = 649

ILU(0) ILU(7)

9



Incomplete decompositions
Enhanced matrix-based patterns: using levels

Fast computation (Hysom, Pothen, 2001)
Typically expensive to apply for modest number of levels (powers of
A)

10



Incomplete decompositions
Enhanced matrix-based patterns: using levels

Fast computation (Hysom, Pothen, 2001)
Typically expensive to apply for modest number of levels (powers of
A)

Example: Matrix ENGINE, n = 143, 571, nz = 2, 424, 822

levels size prec iterations

0 2,424,822 523

1 4,458,588 300

2 7,595,466 199

3 12,128,289 115

4 18,078,603 87

5 25,474,380 54

6 34,153,746 45

7 43,861,328 46

8 54,276,063 36

Any idea? 10



Incomplete decompositions
External enhancements

D) Preprocessing, postprocessing, modifications
preprocessing: reorderings, prefiltration, scalings

11



Incomplete decompositions
External enhancements

D) Preprocessing, postprocessing, modifications
preprocessing: reorderings, prefiltration, scalings
Example: Matrix ENGINE, n = 143, 571, nz = 2, 424, 822, MMD

11



Incomplete decompositions
External enhancements

D) Preprocessing, postprocessing, modifications
preprocessing: reorderings, prefiltration, scalings
Example: Matrix ENGINE, n = 143, 571, nz = 2, 424, 822, MMD

levels size its size its

0 2,424,822 523 2,424,822 439

1 4,458,588 300 4,394,040 214

2 7,595,466 199 6,509,826 159

3 12,128,289 115 8,859,522 96

4 18,078,603 87 11,292,927 66

5 25,474,380 54 13,664,157 49

6 34,153,746 45 15,891,321 34

7 43,861,328 46 † †

8 54,276,063 36 19,590,303 18

11



Incomplete decompositions
External enhancements

D) Preprocessing, postprocessing, modifications
preprocessing: reorderings, prefiltration, scalings
Example: Matrix ENGINE, n = 143, 571, nz = 2, 424, 822, MMD

levels size its size its

0 2,424,822 523 2,424,822 439

1 4,458,588 300 4,394,040 214

2 7,595,466 199 6,509,826 159

3 12,128,289 115 8,859,522 96

4 18,078,603 87 11,292,927 66

5 25,474,380 54 13,664,157 49

6 34,153,746 45 15,891,321 34

7 43,861,328 46 † †

8 54,276,063 36 19,590,303 18

Similarly: postprocessings, diagonal/offdiagonal modifications based on
sizes of entries

11



Incomplete decompositions
Values

E) Values should be considered throughout

12



Incomplete decompositions
Values

E) Values should be considered throughout

again: model can provide useful info (decay, etc.)

12



Incomplete decompositions
Values

E) Values should be considered throughout

again: model can provide useful info (decay, etc.)

if only magnitudes of entries are used - structural information may be
lost

12



Incomplete decompositions
Values

E) Values should be considered throughout

again: model can provide useful info (decay, etc.)

if only magnitudes of entries are used - structural information may be
lost

more complicated schemes may strongly restrict implementation (e.g.,
if both row and column access for intermediate quantities is needed)

12



Incomplete decompositions
Values

E) Values should be considered throughout

again: model can provide useful info (decay, etc.)

if only magnitudes of entries are used - structural information may be
lost

more complicated schemes may strongly restrict implementation (e.g.,
if both row and column access for intermediate quantities is needed)

Example: Matrix LDOOR, n = 952, 203, nz = 23, 737, 339 (mostly various
SPD variants of ILUT (Saad, 1994))

12



Incomplete decompositions
Values

E) Values should be considered throughout

again: model can provide useful info (decay, etc.)

if only magnitudes of entries are used - structural information may be
lost

more complicated schemes may strongly restrict implementation (e.g.,
if both row and column access for intermediate quantities is needed)

Example: Matrix LDOOR, n = 952, 203, nz = 23, 737, 339 (mostly various
SPD variants of ILUT (Saad, 1994))

precond / precond. size its

Jacobi 810

IC(0) > 1000

23,838,704 > 1000

30,047,027 > 1000

37,809,756 > 1000

12



Incomplete decompositions
Values (continued)

E) Values should be considered throughout (continued)

13



Incomplete decompositions
Values (continued)

E) Values should be considered throughout (continued)

Example: Matrix ENGINE, n = 143571, nz = 2424822:

13



Incomplete decompositions
Values (continued)

E) Values should be considered throughout (continued)

Example: Matrix ENGINE, n = 143571, nz = 2424822:

fast convergence with IC(0)

13



Incomplete decompositions
Values (continued)

E) Values should be considered throughout (continued)

Example: Matrix ENGINE, n = 143571, nz = 2424822:

fast convergence with IC(0)

very bad results for all tested cases of IC by value

13



Incomplete decompositions
Values (continued)

E) Values should be considered throughout (continued)

Example: Matrix ENGINE, n = 143571, nz = 2424822:

fast convergence with IC(0)

very bad results for all tested cases of IC by value

Consequently: Still very far from any predictable behavior: total lack
of robustness

13



Incomplete decompositions
Values (continued)

E) Values should be considered throughout (continued)

Example: Matrix ENGINE, n = 143571, nz = 2424822:

fast convergence with IC(0)

very bad results for all tested cases of IC by value

Consequently: Still very far from any predictable behavior: total lack
of robustness

Any idea?: Use inverse of A during the construction

13



Incomplete decompositions
Values (continued)

E) Values should be considered throughout (continued)

Example: Matrix ENGINE, n = 143571, nz = 2424822:

fast convergence with IC(0)

very bad results for all tested cases of IC by value

Consequently: Still very far from any predictable behavior: total lack
of robustness

Any idea?: Use inverse of A during the construction

Next: IF via/with inverses. But, see also work of Saad and Bollhöfer,
2002.

13



Outline

1 Introduction

2 Direct incomplete decompositions

3 IF via approximate inverses

4 IF with approximate inverses

5 Conclusions

14



IF via approximate inverses
RIF motivation

RIF (Robust incomplete factorization)

15



IF via approximate inverses
RIF motivation

RIF (Robust incomplete factorization)

Based on factorized approximate inverses, Benzi, T., 2003.

15



IF via approximate inverses
RIF motivation

RIF (Robust incomplete factorization)

Based on factorized approximate inverses, Benzi, T., 2003.

Consider the triangular decomposition A−1 ∼ L̂−TD−1L̂−1.

15



IF via approximate inverses
RIF motivation

RIF (Robust incomplete factorization)

Based on factorized approximate inverses, Benzi, T., 2003.

Consider the triangular decomposition A−1 ∼ L̂−TD−1L̂−1.

Notation: L, L̂ : (lij), L
−1, L̂−1 : (ℓij) ≡ (ℓj)

15



IF via approximate inverses
RIF motivation

RIF (Robust incomplete factorization)

Based on factorized approximate inverses, Benzi, T., 2003.

Consider the triangular decomposition A−1 ∼ L̂−TD−1L̂−1.

Notation: L, L̂ : (lij), L
−1, L̂−1 : (ℓij) ≡ (ℓj)

Compare with the (exact) LDLT decomposition of A:

15



IF via approximate inverses
RIF motivation

RIF (Robust incomplete factorization)

Based on factorized approximate inverses, Benzi, T., 2003.

Consider the triangular decomposition A−1 ∼ L̂−TD−1L̂−1.

Notation: L, L̂ : (lij), L
−1, L̂−1 : (ℓij) ≡ (ℓj)

Compare with the (exact) LDLT decomposition of A:
Factor L of A = LDLT is L = AL−TD−1

It can be easily retrieved from this inverse factorization

⇓

AL−1 = LD, lower triangular

15



IF via approximate inverses
RIF motivation

RIF (Robust incomplete factorization)

Based on factorized approximate inverses, Benzi, T., 2003.

Consider the triangular decomposition A−1 ∼ L̂−TD−1L̂−1.

Notation: L, L̂ : (lij), L
−1, L̂−1 : (ℓij) ≡ (ℓj)

Compare with the (exact) LDLT decomposition of A:
Factor L of A = LDLT is L = AL−TD−1

It can be easily retrieved from this inverse factorization

⇓

AL−1 = LD, lower triangular

〈ek, Aℓj〉

dk
= lkj for k ≥ j

15



IF via approximate inverses
RIF motivation

RIF (Robust incomplete factorization)

Based on factorized approximate inverses, Benzi, T., 2003.

Consider the triangular decomposition A−1 ∼ L̂−TD−1L̂−1.

Notation: L, L̂ : (lij), L
−1, L̂−1 : (ℓij) ≡ (ℓj)

Compare with the (exact) LDLT decomposition of A:
Factor L of A = LDLT is L = AL−TD−1

It can be easily retrieved from this inverse factorization

⇓

AL−1 = LD, lower triangular

〈ek, Aℓj〉

dk
= lkj for k ≥ j

From L−1 we can get L (from L̂−1 get L̂)

15



IF via approximate inverses
RIF implementation

Note: lkj =
〈ek, Aℓj〉

dk
≡
〈ℓk, Aℓj〉

dk
for k ≥ j

16



IF via approximate inverses
RIF implementation

Note: lkj =
〈ek, Aℓj〉

dk
≡
〈ℓk, Aℓj〉

dk
for k ≥ j

⇓

16



IF via approximate inverses
RIF implementation

Note: lkj =
〈ek, Aℓj〉

dk
≡
〈ℓk, Aℓj〉

dk
for k ≥ j

⇓

The latter equivalence provides a breakdown-free implementation
(Benzi, T., 2003).

16



IF via approximate inverses
RIF implementation

Note: lkj =
〈ek, Aℓj〉

dk
≡
〈ℓk, Aℓj〉

dk
for k ≥ j

⇓

The latter equivalence provides a breakdown-free implementation
(Benzi, T., 2003).
Experimentally, it is often more space efficient for the same iteration
counts.

16



IF via approximate inverses
RIF implementation

Note: lkj =
〈ek, Aℓj〉

dk
≡
〈ℓk, Aℓj〉

dk
for k ≥ j

⇓

The latter equivalence provides a breakdown-free implementation
(Benzi, T., 2003).
Experimentally, it is often more space efficient for the same iteration
counts.

L

done
not used

done
used

inv(L)

16



IF via approximate inverses
RIF implementation

Note: lkj =
〈ek, Aℓj〉

dk
≡
〈ℓk, Aℓj〉

dk
for k ≥ j

⇓

The latter equivalence provides a breakdown-free implementation
(Benzi, T., 2003).
Experimentally, it is often more space efficient for the same iteration
counts.

L

done
not used

done
used

inv(L)

One way tranfer of information
16



Outline

1 Introduction

2 Direct incomplete decompositions

3 IF via approximate inverses

4 IF with approximate inverses

5 Conclusions

17



IF with approximate inverses
(I − A−1)−1 biconjugation

Consider

A = I +
n∑

k=1

ek(ak − ek)
T

18



IF with approximate inverses
(I − A−1)−1 biconjugation

Consider

A = I +
n∑

k=1

ek(ak − ek)
T

Apply n Sherman-Morrison updates to get A−1.
(Bru, Cerdán, Marín, Mas, 2003)

18



IF with approximate inverses
(I − A−1)−1 biconjugation

Consider

A = I +
n∑

k=1

ek(ak − ek)
T

Apply n Sherman-Morrison updates to get A−1.
(Bru, Cerdán, Marín, Mas, 2003)

The process for R = (rk), V = (vk), D = diag(d1, . . . , dn) for
k = 1, 2, . . . , n:

rk = ek −
k−1∑

i=1

vTi ek

sri
ri , vk = (ak − ek)k −

k−1∑

i=1

(ak − ek)
T
k ri

sri
vi,

dk = 1 + (ak − ek)
T
k rk = 1 + vTk ek.

18



IF with approximate inverses
(I − A−1)−1 biconjugation

Consider

A = I +
n∑

k=1

ek(ak − ek)
T

Apply n Sherman-Morrison updates to get A−1.
(Bru, Cerdán, Marín, Mas, 2003)

The process for R = (rk), V = (vk), D = diag(d1, . . . , dn) for
k = 1, 2, . . . , n:

rk = ek −
k−1∑

i=1

vTi ek

sri
ri , vk = (ak − ek)k −

k−1∑

i=1

(ak − ek)
T
k ri

sri
vi,

dk = 1 + (ak − ek)
T
k rk = 1 + vTk ek.

I −A−1 = RD−1V T , R unit upper triangular.

18



IF with approximate inverses
balancing L and L−1

Theorem

(Bru, Mas, Marín, T. 2007) For an SPD A, let there exist the
decomposition from above

A−1 = I −RDV T (1)

and let A = LD̄LT be the LDLT decomposition of A. Then
V = LD̄ − L−T , R = L−1, D̄ = D.

19



IF with approximate inverses
balancing L and L−1

Theorem

(Bru, Mas, Marín, T. 2007) For an SPD A, let there exist the
decomposition from above

A−1 = I −RDV T (1)

and let A = LD̄LT be the LDLT decomposition of A. Then
V = LD̄ − L−T , R = L−1, D̄ = D.

Pictorially:

19



IF with approximate inverses
balancing L and L−1

Theorem

(Bru, Mas, Marín, T. 2007) For an SPD A, let there exist the
decomposition from above

A−1 = I −RDV T (1)

and let A = LD̄LT be the LDLT decomposition of A. Then
V = LD̄ − L−T , R = L−1, D̄ = D.

Pictorially:

V =




. . . −L−T

. . .

LD
. . .




, diag(V ) = D − I. (2)

19



IF with approximate inverses
balancing L and L−1

V =




. . . −L−T

. . .

LD
. . .



, diag(V ) = D − I. (3)

20



IF with approximate inverses
balancing L and L−1

V =




. . . −L−T

. . .

LD
. . .



, diag(V ) = D − I. (3)

That is, we compute L and L−1 at the same time, by columns. To
get L, only V is necessary.

20



IF with approximate inverses
balancing L and L−1

V =




. . . −L−T

. . .

LD
. . .



, diag(V ) = D − I. (3)

That is, we compute L and L−1 at the same time, by columns. To
get L, only V is necessary.
Nonsymmetric extension is clear. Further improvements of the
algorithm are possible as well.

20



IF with approximate inverses
balancing L and L−1

V =




. . . −L−T

. . .

LD
. . .



, diag(V ) = D − I. (3)

That is, we compute L and L−1 at the same time, by columns. To
get L, only V is necessary.
Nonsymmetric extension is clear. Further improvements of the
algorithm are possible as well.

Sparse case used for preconditioning: The factors L and L−1

influence (balance) each other during the computation and can be
connected via dropping (Bru, Mas, Marín, T. 2007)

20



IF with approximate inverses
balancing L and L−1

V =




. . . −L−T

. . .

LD
. . .



, diag(V ) = D − I. (3)

That is, we compute L and L−1 at the same time, by columns. To
get L, only V is necessary.
Nonsymmetric extension is clear. Further improvements of the
algorithm are possible as well.

Sparse case used for preconditioning: The factors L and L−1

influence (balance) each other during the computation and can be
connected via dropping (Bru, Mas, Marín, T. 2007)

They can influence each other even in the exact case, purely by the
decomposition (Bru, Mas, Marín, T. 2008).

20



IF with approximate inverses
BIF experiments

Example: matrix PWTK, n=217,918, nnz=5,926,171

21



IF with approximate inverses
BIF experiments

Example: matrix PWTK, n=217,918, nnz=5,926,171

0 1 2 3 4 5 6

x 10
6

0

5

10

15

20

25
tim

e 
to

 c
om

pu
te

 th
e 

pr
ec

on
di

tio
ne

r 
(in

 s
ec

on
ds

)

size of the preconditioner (in the number of nonzeros)

 RIF
 BIF

21



IF with approximate inverses
Of course: not only pros; cons as well

Taking approximate inverses into account, dropping must be always
strong. Prefiltration of entries of A seems to be standard strategy.

22



IF with approximate inverses
Of course: not only pros; cons as well

Taking approximate inverses into account, dropping must be always
strong. Prefiltration of entries of A seems to be standard strategy.

We used the inverse-based dropping rules based on Saad, Bollhöfer,
2002. They need to be further investigated. They often seem to
influence entries of the factors nonuniformly. Also, the dropping often
forces skipping a lot of updates in the decomposition. Is this really
the right way to go?

22



IF with approximate inverses
Of course: not only pros; cons as well

Taking approximate inverses into account, dropping must be always
strong. Prefiltration of entries of A seems to be standard strategy.

We used the inverse-based dropping rules based on Saad, Bollhöfer,
2002. They need to be further investigated. They often seem to
influence entries of the factors nonuniformly. Also, the dropping often
forces skipping a lot of updates in the decomposition. Is this really
the right way to go?

Convergence curve is later often flat if we run many iterations. Is the
accuracy sufficient for solving sequences from nonlinear solvers?

22



IF with approximate inverses
BIF experiments

0 1 2 3 4 5 6

x 10
6

0

5

10

15

20

25

30

35

40
to

ta
l t

im
e 

(in
 s

ec
on

ds
)

size of the preconditioner (in the number of nonzeros)

 RIF
 BIF

23



Outline

1 Introduction

2 Direct incomplete decompositions

3 IF via approximate inverses

4 IF with approximate inverses

5 Conclusions

24



Conclusions

Progress in rethinking decompositions still possible.

25



Conclusions

Progress in rethinking decompositions still possible.

Algebraic preconditionings can profit from this.

25



Conclusions

Progress in rethinking decompositions still possible.

Algebraic preconditionings can profit from this.

Do we understand basic decompositions?

25



Conclusions

Progress in rethinking decompositions still possible.

Algebraic preconditionings can profit from this.

Do we understand basic decompositions?

Thank you for your attention!

25



Last but not least

Thank you for your attention!

26



Last but not least

Thank you for your attention!

26



Last but not least

Thank you for your attention!

26



Last but not least

Thank you for your attention!

26


	Algebraic preconditioners
	Introduction
	Direct incomplete decompositions
	IF via approximate inverses
	IF with approximate inverses
	Conclusions


