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Continuous formulation

® Geometry (in 2D)

® Classical formulation

® Weak formulation

® Time discretization
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® Method of successive
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Classical formulation

Continuous formulation

© Geometry (in 2D) equilibrium equations:

® Classical formulation
@ Weak formulation

@ Time discretization 87_@ :
oFixedpointapproa(.:h J —|— F’L — O Z’]’L Q X (O’ 1—10)7 ’L p— 17 2’
® Method of successive 8:{; o

approximations J

® Mixed formulation of

(Q(9)) .
linear Hooke’s law:

Discretization and FETI-DP

Numerical study sz = C,ijlgkl (u . i,j’ k,l — 17 2,
_ 1 /0ug Ouy \ .
Reference Ekl (u) — §(Tl + Tk:) )

classical boundary conditions:

u; =0 onTy, x(0,7y), i =1,2;
Tz' ‘= TijlVj :Pz on Fp X (O,T()), 1= 1,2,
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Classical formulation

Conditionson I',.

Continuous formulation

® Geometry (in 2D) . L
® Classical formulation unilateral conditions:
® Weak formulation
® Time discretization
® Fixed pomtapproa(.:h uy S O’ TV S O7 uyTy — O on FC >< (07 TO))
® Method of successive
approximations
® Mixed formulation of

(Q(9)) Coulomb’s law of friction:

Discretization and FETI-DP

ur(x)=0 = |rp(x) F(x)r,(x); xel.x(0,Tp)

Numerical study

| < -
ur(x)#0 = 1p(x) = F(z)1,(2)Signir(x) .

Reference

Fec'(T.,), F>0

Initial condition:
u(0) =ug in Q.
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Continuous formulation

® Geometry (in 2D)

® Classical formulation

® Weak formulation

® Time discretization

® Fixed point approach

® Method of successive
approximations

® Mixed formulation of

((9))

Discretization and FETI-DP

Numerical study

Reference

Weak formulation

Notation

V={veHQ)|v=00nT,}, V=VxV

K={veV|v, <0a.e onl.}

Hl/Z(FC) _ V|r (space of traces on I'.. of functions from V")
1/2(pc) = (H"(T.))" (the dual space to H"*(T'.))
~"2(I";) ... (cone of all non—positive elements of H~"*(T..))

(', )... duality pairing between H ~ 1/2(Fc) and H1/2(Fc)

Assumptions:

P e W'*(0, T, (L*(Tp))?)
—(FA, |vr])

F cW*2(0, Ty, (L*(Q))?),
ofu) = [ mwes)ds, i) =

L(t)(v) ::/QFi(t)vi dx+/1“ P;(t)v; ds ,

w,v eV, e H'*(T,)
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Continuous formulation

® Geometry (in 2D)

® Classical formulation

® Weak formulation

® Time discretization

® Fixed point approach

® Method of successive

approximations
® Mixed formulation of

((9))

Discretization and FETI-DP

Numerical study

Reference

Weak formulation

\

Find u € W"2(0,75,V), A € W"*(0,Ty, H "*(T',)) :
u(t) € K foraa.t € (0,7py), u(0) = ugin §2
a(u(t),v —u(t)) + (A1), v) = J(A(t), u(t)) =
L(t) (v — u(t)) + (A(t), v, — ()
Vv € Vandforaat € (0,Tp)
(A(t), 2z, —u,(t)) >0 Vze Kandforaat e (0,7))

/

where
a(ug,v —ug) + j( Ao, v — ug) > L(0)(v — ug) Vv € K |

)\0 = T,/(’LLQ)|FC .
Classical and weak formulations are formally equivalent and

A\ = T,/(u)|rc

[Rocca R. and Coccu M. 01]: If supp F C I'. and F is small
enough, then (P) has at least one solution.
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Continuous formulation

® Geometry (in 2D)

® Classical formulation

® Weak formulation

® Time discretization

® Fixed point approach
® Method of successive

approximations
® Mixed formulation of

((9))

Discretization and FETI-DP

Numerical study

Reference

Time discretization

At=Ty/n ... ... time step, t; = iAt, u' = u(t;).

i+1

e approximation 4/+! ~ ¥

e denotingw :=u* + Atv € V
e Writing v instead ‘™! and v
e skipping the index i

1

instead u*

Leads to a implicit mixed formulation:

Find u, A € V x H_"*(T',) such that
a(u,w—u)+ jA, w—v)—jAu—v) >

L(w —u) + (A,

<M—>\,’U,V> >0

wy —uy) Yw eV
Vu e H-*(T,) .

-~
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Continuous formulation
® Geometry (in 2D)

® Classical formulation

® Weak formulation

® Time discretization

® Fixed point approach

® Method of successive
approximations

® Mixed formulation of

(Q(9))

Discretization and FETI-DP

Numerical study

Reference

Fixed point approach

With any ¢ € H_"*(T'.) we associate the auxiliary

problem (Q(g)): Forv € K given

Find u :=u(g) € V, A :=X(g) € H-"*(T,) st
CL(U, W — ’LL) + ](ga w—v) - ](ga U—U) >
Lw—u)+
(u—ANuy,) >0 VYue H- 1/2(I‘C) ,
There exists a unique solution of (Q(g)) for every
gecH_"*(T,).
Let®: H_"*(I'.) — H_"*(T

(A, w, — Yw eV

ge H-A(T,) .

)

<) be a mapping defined by

Compairing (Q) and (Q(g)) we see that (u, \) solves (Q) iff A

IS a fixed point of ®:

B(N) = \.
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Continuous formulation

® Geometry (in 2D)

® Classical formulation

® Weak formulation

® Time discretization

® Fixed point approach

® Method of successive
approximations

® Mixed formulation of

((9))

Discretization and FETI-DP

Numerical study

Reference

Method of successive approximations

Let A\(O) ¢ H~"*(T,) be given, k := 1;
if \(¥) ¢ HZ*(T,), k > 1 is known,
solve (Q(A%))) and set AF+1) .= ),
where (u, \) is a solution of (Q(A*));
k:=Fk+1;

repeat until stopping criterion
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Continuous formulation

® Geometry (in 2D)

® Classical formulation

® Weak formulation

® Time discretization

® Fixed point approach
® Method of successive

approximations
® Mixed formulation of

(Q(9))

Discretization and FETI-DP

Numerical study

Reference

Mixed formulation of (Q(g))

Let
A, = H_"*(T,)
Ar(g) = {ur € L*(T.)| |pr| < Fga.e.onT.}, g€ Li(T.).

Mixed formulation of (Q(g)) reads as follows:

\

Find (u, Ay, A7) € V X A, x Ar(g) such that
a(u,w) = L(w) + (A, w,) + Ap,wp) Yw eV
(e — Ap,uy) 20 VY, €A,

(BT — Ar,ur) = (pr — Ar,vr) Ypr € Ar(g) . |

It holds:
e u € K solves (9(g));
e\, =7 (u)p » A = 7r(u), onT..

|Fc’
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Continuous formulation

Discretization and FETI-DP
® Substructuring by

the FETI-DP method
@ Discretization and FETI-DP

® QP problem with box

constraints
® Matrix in Feti-DP saddle

point problem

Numerical study

Reference

Substructuring by the FETI-DP method

q
Let @ = |_J € be a polygonal domain.

1=1

YYVYVYYVYY
o—O0 0 090

p
F:UFk, Fk:aQiﬂan...
k=1

S

skeleton I'

|
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Discretization and FETI-DP

Discretization of primal variables

Continuous formuation Let 7, be a triangulation of Q;, 7 =1,. .., ¢, such that
Discretization and FETI-DP
e Tire =Zjpr,,  Te =N O, .

® Discretization and FETI-DP
® QP problem with box

Jconsvans System 7 = {7}, creates a triangulation of .

point problem
Numerical study X: — {U e (C(Qz))2‘ UlT e (P]- (T))2 VT e T”/’
Reference v=0o0n0Q;NT,, v=0at"corners"C}

X=X X X5 X+ X X[
X¢={p,, a €C},
where ¢, € V}, is the Courant basis function at a. We set
X=X"X°.
It holds:
(veX)A(vyJ=0onT)=0veV.
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Discretization and FETI-DP

Discretization of dual variables
s We construct the partition AT, of ', into segments
e taaton and TR I € AT, so, that there is one—to—one correspondence

© Substucturng by between contact nodes a; and segments [; € AT..

® Discretization and FETI-DP
® QP problem with box

L={peL?*T.)| p, €Po() VIeAT.}
pomfpmmem A,={peLll p<0ae onl.}
Ar={pel| |p|<Fg'VIel.}

(,V)r, = Z,uiv(ai)\lﬂ, 1;| ... length I;
i€T
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Discretization and FETI-DP

Discretization of dual variables

s To remove discontinuity of functions on int I" we introduce
eeretvation and FETLDP a new set Ar of Lagrange multipliers on I":

® Substructuring by
the FETI-DP method

@ Discretization and FETI-DP AI‘ — AI‘l X e X A]__‘

® QP problem with box
constraints

e oF sedde where Ar,, k= 1,...,p are chosen in such a way that
the following conditions are satisfied:

p )

Numerical study

Reference

[ Apk A\ <uk,wk>pk =0 VYwp e W =  urp =0
wy € Wi A (ug,wr)r, =0 Vup €Ar, = wp=0

and
Wi, = XU — X' Fk:f?ﬂiﬂ(?ﬂj

/L.|Fk .]|Fk ?
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Continuous formulation

Discretization and FETI-DP

® Substructuring by

the FETI-DP method
® Discretization and FETI-DP

® QP problem with box

constraints
@ Matrix in Feti-DP saddle

point problem

Numerical study

Reference

Discretization and FETI-DP

The FETI-DP method reads as follows (the index h is
omitted):

Find (u, Ar, Ay, Ar) € X X Apr x A, X Ar(g) such that

q

> aifu,w) = ; Li(w) + (s [w])r + (A, w,)r,
—|—<)\T,wT>pc Yw € X

(Uy — Av,up)r, + (T — A, ur)r, > (U — A1, v1)T,

V(pw, pr) € Ay X Ar(g)
{ury [u])r =0 Vur € Ar,

where
p

<7>F::Z<7>Fk

k=1
and [v] is the jump of v across intT.

\
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Continuous formulation

Discretization and FETI-DP

Discretization and FETI-DP

® Substructuring by

the FETI-DP method
® Discretization and FETI-DP

® QP problem with box

constraints
@ Matrix in Feti-DP saddle

point problem

Numerical study

Reference

The previous problem is equivalent to the following system of
equations:

a;(us, w)) = Li(w]) + (Ar, [wi)rnae, + (M, Wi, )ronoo,+
<>\T; wZT>chaQi Vw%ﬁ - X;ﬁ, 1=1,...,q
q 0
Yo ai(u;, w®) = L(w®) + (A, wS)r, + (Ar,wi)r, Vw® e X°
i=1
-+ conditions for Lagrange multipliers

Ui i= Ul , @i =0, , Li:=1L)

Elimination of u; = u] + u¢ leads to a quadratic programming
problem for Ar, A, and A\ with box constraints of
the following type:

SNA 2007, 22-26.1.2007, Ostrava
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QP problem with box constraints

. L d )
Continuous formulation Flnd A T (AF7 AV? ATﬂ) 6 RC X R— X A'T(g) SUCh that
Discretization and FETI-DP S (A) — mlnc S (“) >
® Substructuring by nr ERd
S e py ERZ
o QP proplem with box HT EAT (g) y,
o :\:/Ioei]tfit;a?r?tlfeti-DP saddle
point problem Wh e re

| 1

Numerical study _ T T
S(w)=-p1 Qu—p ' h
Reference 2
and

Ar(g) = {p eRY |u| < g}, geR?L.

For solving this quadratic programming with simple (box)
constraints we use the algorithm MPGRP [Dostal,
Schoeberl].
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Continuous formulation

Discretization and FETI-DP
® Substructuring by

the FETI-DP method
® Discretization and FETI-DP

® QP problem with box

constraints
@ Matrix in Feti-DP saddle

point problem

Numerical study

Reference

Matrix in Feti-DP saddle point problem
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Continuous formulation

Model example

Discretization and FETI-DP

Numerical study

® Model example
@ History of loading
(characterized by
1
¢ :[0,1] - RY)
@ Dependence on h and

the number of subdomains
@ Deformation of €2 at

t = 1 enlarged

300 X
® Normal stress and

displacement on I" -

att = 1
® Tangential stress and

displacement on I" -
at =1

Reference

Q= (0,2) x (0,1) (in meters).

Young’s modulus £ = 21.19¢10|Pal,

Poisson’s ratio o = 0.277, coefficient of friction F = 0.3
Pi(t) = 0., Py(t) = —10.e7¢(t) , onI'}
Pi(t) = 3.e79(1) , Py (t) = 5.e79(1) , onI"

P

\VAVAVAV,

NN
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History of loading (characterized by ¢ : [0,1] — R')

Continuous formulation ¢1 (t) — t (monOtne Ioadlng)

Discretization and FETI-DP ¢2 (t) = —4t2 + 5t (nonmonotne |Oadlng)

Numerical study

® Model example
@ History of loading
(characterized by

é : [0,1] — RL)
@ Dependence on h and

the number of subdomains
@ Deformation of €2 at

t = 1 enlarged

300 X
® Normal stress and

displacement on I" -

att = 1
® Tangential stress and

displacement on I" -
at =1

Reference
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Continuous formulation

Discretization and FETI-DP

Numerical study

® Model example

@ History of loading
(characterized by

¢ :[0,1] — Rl)
@ Dependence on h and

the number of subdomains
@ Deformation of €2 at

t = 1 enlarged

300 X
® Normal stress and

displacement on I" -

att = 1
® Tangential stress and

displacement on I" -
at =1

Reference

Dependence on h and the number of subdomains

Ng .. humber of subdomains
ny,,ng ...Number of primal, dual variables, respectively
it .. fixed—point iterations
Nm, .. dual matrix multiplications
Ng My Ng 1t Nom,
8 1936 260 | 135/120 | 6515/ 5565
32 7744 1096 | 136/121 | 8326/ 7309
128 | 30974 | 4496 | 136/122 | 11423/ 9844
512 | 123904 | 18208 | 135/122 | 15206/13237
1024 | 495616 | 73280 | 146/129 | 22887/19659
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Continuous formulation

Discretization and FETI-DP

Numerical study

® Model example
@ History of loading
(characterized by

é :[0,1] — RL
@ Dependence on h and

the number of subdomains
@ Deformation of €2 at

t = 1 enlarged
300 X

® Normal stress and
displacement on I" -

att = 1
® Tangential stress and

displacement on I" -
at = 1

Reference

Deformation of Q2 at ¢t = 1 enlarged 300x

0.8
0.6
0.4
0.2

AYAN
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Continuous formulation

Discretization and FETI-DP

Numerical study

® Model example
@ History of loading
(characterized by

é :[0,1] — RL
@ Dependence on h and

the number of subdomains
@ Deformation of €2 at

t = 1 enlarged
300 X

® Normal stress and
displacement on I" -

att = 1
® Tangential stress and

displacement on I" -
at = 1

Reference

Deformation of Q2 at ¢t = 1 enlarged 300x

0.8
0.6
0.4
0.2

1.5
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Normal stress and displacementonI'.at¢t =1

— displacements
Continuous formulation —_— Stresses

1

Discretization and FETI-DP

Numerical study

® Model example
@ History of loading
(characterized by

¢ :[0,1] — ]Rl)
@ Dependence on h and

the number of subdomains
@ Deformation of €2 at

t = 1 enlarged
300 X

® Normal stress and
displacement on I" -

att = 1
® Tangential stress and

displacement on I" -
at =1

Reference
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Normal stress and displacementonI'.at¢t =1

— displacements
Continuous formulation —_— Stresses

2

Discretization and FETI-DP

Numerical study

® Model example
@ History of loading
(characterized by

¢ :[0,1] — ]Rl)
@ Dependence on h and

the number of subdomains
@ Deformation of €2 at

t = 1 enlarged
300 X

® Normal stress and
displacement on I" -

att = 1
® Tangential stress and

displacement on I" -
at =1

Reference
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Continuous formulation

Tangential stress and displacementonI'.at¢t =1

Discretization and FETI-DP

Numerical study

® Model example
@ History of loading
(characterized by
¢ :[0,1] — ]Rl)
@ Dependence on h and
the number of subdomains
@ Deformation of €2 at
t = 1 enlarged
300 x
® Normal stress and
displacement on I" -
att = 1
® Tangential stress and
displacement on I" -
att = 1

Reference

SNA 2007, 22-26.1.2007, Ostrava
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Tangential stress and displacementonI'.at¢t =1

— displacements
Continuous formulation —_— Stresses

2

Discretization and FETI-DP

x 10" x 10~

Numerical study

® Model example
@ History of loading
(characterized by

¢ :[0,1] — ]Rl)
@ Dependence on h and

the number of subdomains
@ Deformation of €2 at

t = 1 enlarged
300 X

® Normal stress and
displacement on I" -

att = 1
® Tangential stress and

displacement on I" -
at = 1

Reference
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Reference

Contact problems with friction (static case)

Continuous formulation

Discretization and FETI-DP Theoretical analysis: Duvaut, Lions, NecCas, JaruSek, Eck,
Numerical sty Oden, Kikuchi, Fremond, ...

Reference

® Reference

Discretization, numerical realization: Panagiotopoulos, Raous,
Cocou, Hild, Laborde, Renard, Bisegna, Lebon, Hlavacek,
Kikuchi, Wohlmuth, Krause, ...

Qualitate analysis: Hild, Renard, lonescu, Balard, ...
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