Approximation and numerical realization of 2D quasistatic contact problems with local Coulomb friction

J. Haslinger ${ }^{a}$, $\underline{\text { O. Vlach }}^{b}$, Z. Dostál ${ }^{b}$

a) Charles University, Prague, Czech Republic
b) VŠB-TU Ostrava, Czech Republic

SNA, 22-26.1.2007

Continuous formulation

- Geometry (in 2D)
- Classical formulation
- Weak formulation
- Time discretization
- Fixed point approach
- Method of successive
approximations
- Mixed formulation of
$(\mathcal{Q}(g))$

Discretization and FETI-DP

Numerical study

Reference

$$
\partial \Omega=\bar{\Gamma}_{u} \cup \bar{\Gamma}_{p} \cup \bar{\Gamma}_{c}
$$

Classical formulation

Continuous formulation

- Geometry (in 2D)
- Classical formulation
- Weak formulation
- Time discretization
- Fixed point approach
- Method of successive approximations
- Mixed formulation of $(\mathcal{Q}(g))$

Discretization and FETI-DP

Numerical study

Reference

equilibrium equations:

$$
\frac{\partial \tau_{i j}}{\partial x_{j}}+F_{i}=0 \quad \text { in } \Omega \times\left(0, T_{0}\right), \quad i=1,2
$$

linear Hooke's law:

$$
\begin{aligned}
& \tau_{i j}=c_{i j k l} \varepsilon_{k l}(u), \quad i, j, k, l=1,2 \\
& \quad \varepsilon_{k l}(u)=\frac{1}{2}\left(\frac{\partial u_{k}}{\partial x_{l}}+\frac{\partial u_{l}}{\partial x_{k}}\right)
\end{aligned}
$$

classical boundary conditions:

$$
\begin{aligned}
& u_{i}=0 \quad \text { on } \Gamma_{u} \times\left(0, T_{0}\right), i=1,2 \\
& T_{i}:=\tau_{i j} \nu_{j}=P_{i} \quad \text { on } \Gamma_{p} \times\left(0, T_{0}\right), i=1,2
\end{aligned}
$$

Classical formulation

Conditions on Γ_{c}

Continuous formulation

- Geometry (in 2D)
- Classical formulation
- Weak formulation
- Time discretization
- Fixed point approach
- Method of successive approximations
- Mixed formulation of $(\mathcal{Q}(g))$

Discretization and FETI-DP

Numerical study

Reference
unilateral conditions:

$$
u_{\nu} \leq 0, \quad \tau_{\nu} \leq 0, \quad u_{\nu} \tau_{\nu}=0 \quad \text { on } \Gamma_{c} \times\left(0, T_{0}\right)
$$

Coulomb's law of friction:

$$
\begin{aligned}
& \dot{u}_{T}(x)=0 \Rightarrow\left|\tau_{T}(x)\right| \leq-\mathcal{F}(x) \tau_{\nu}(x) ; \quad x \in \Gamma_{c} \times\left(0, T_{0}\right) \\
& \dot{u}_{T}(x) \neq 0 \Rightarrow \tau_{T}(x)=\mathcal{F}(x) \tau_{\nu}(x) \text { sign } \dot{u}_{T}(x)
\end{aligned}
$$

$$
\mathcal{F} \in C^{1}\left(\Gamma_{c}\right), \quad \mathcal{F} \geq 0
$$

initial condition:

$$
u(0)=u_{0} \quad \text { in } \Omega
$$

Weak formulation

Notation

Continuous formulation

- Geometry (in 2D)
- Classical formulation
- Weak formulation
- Time discretization
- Fixed point approach
- Method of successive approximations
- Mixed formulation of
$(\mathcal{Q}(g))$

Discretization and FETI-DP

Numerical study

Reference

$$
\begin{aligned}
V & =\left\{v \in H^{1}(\Omega) \mid v=0 \text { on } \Gamma_{u}\right\}, \quad \mathbb{V}=V \times V \\
K & =\left\{v \in \mathbb{V} \mid v_{\nu} \leq 0 \text { a.e. on } \Gamma_{c}\right\} \\
H^{1 / 2}\left(\Gamma_{c}\right) & =V_{\Gamma_{c}}\left(\text { space of traces on } \Gamma_{c} \text { of functions from } V\right) \\
H^{-1 / 2}\left(\Gamma_{c}\right) & \left.=\left(H^{1 / 2}\left(\Gamma_{c}\right)\right)^{\prime} \text { (the dual space to } H^{1 / 2}\left(\Gamma_{c}\right)\right) \\
H_{-}^{-1 / 2}\left(\Gamma_{c}\right) & \left.\ldots \text { (cone of all non-positive elements of } H^{-1 / 2}\left(\Gamma_{c}\right)\right) \\
\langle,\rangle & \ldots \text { duality pairing between } H^{-1 / 2}\left(\Gamma_{c}\right) \text { and } H^{1 / 2}\left(\Gamma_{c}\right)
\end{aligned}
$$

Assumptions:

$$
\begin{aligned}
& F \in W^{1,2}\left(0, T_{0},\left(L^{2}(\Omega)\right)^{2}\right), \quad P \in W^{1,2}\left(0, T_{0},\left(L^{2}\left(\Gamma_{p}\right)\right)^{2}\right) \\
& a(u, v):=\int_{\Omega} \tau_{i j}(u) \varepsilon_{i j}(v) d x, \quad j(\lambda, v):=-\langle\mathcal{F} \lambda,| v_{T}| \rangle \\
& L(t)(v):=\int_{\Omega} F_{i}(t) v_{i} d x+\int_{\Gamma_{p}} P_{i}(t) v_{i} d s, \quad u, v \in \mathbb{V}, \quad \lambda \in H^{-1 / 2}\left(\Gamma_{c}\right)
\end{aligned}
$$

Weak formulation

Continuous formulation

- Geometry (in 2D)
- Classical formulation
- Weak formulation
- Time discretization
- Fixed point approach
- Method of successive approximations
- Mixed formulation of
$(\mathcal{Q}(g))$
Discretization and FETI-DP

Numerical study

Reference
where

$$
\begin{aligned}
& a\left(u_{0}, v-u_{0}\right)+j\left(\lambda_{0}, v-u_{0}\right) \geq L(0)\left(v-u_{0}\right) \quad \forall v \in K \\
& \quad \lambda_{0}=\tau_{\nu}\left(u_{0}\right)_{\Gamma_{c}} .
\end{aligned}
$$

Classical and weak formulations are formally equivalent and

$$
\lambda=\tau_{\nu}(u)_{\left.\right|_{\Gamma_{c}}}
$$

[Rocca R. and Coccu M. 01]: If $\operatorname{supp} \mathcal{F} \subset \Gamma_{c}$ and \mathcal{F} is small enough, then (\mathcal{P}) has at least one solution.

Time discretization

$\Delta t=T_{0} / n \ldots \ldots$ time step, $t_{i}=i \Delta t, u^{i}:=u\left(t_{i}\right)$.

Continuous formulation

- Geometry (in 2D)
- Classical formulation
- Weak formulation
- Time discretization
- Fixed point approach
- Method of successive approximations
- Mixed formulation of
$(\mathcal{Q}(g))$

Discretization and FETI-DP

Numerical study

Reference

$$
\left.\begin{array}{l}
\text { Find } u, \lambda \in \mathbb{V} \times H_{-}^{-1 / 2}\left(\Gamma_{c}\right) \text { such that } \\
a(u, w-u)+j(\underline{\lambda}, w-v)-j(\underline{\lambda}, u-v) \geq \\
L(w-u)+\left\langle\lambda, w_{\nu}-u_{\nu}\right\rangle \quad \forall w \in \mathbb{V} \tag{Q}\\
\left\langle\mu-\lambda, u_{\nu}\right\rangle \geq 0 \quad \forall \mu \in H_{-}^{-1 / 2}\left(\Gamma_{c}\right) .
\end{array}\right\}
$$

Fixed point approach

Continuous formulation

- Geometry (in 2D)
- Classical formulation
- Weak formulation
- Time discretization
- Fixed point approach
- Method of successive approximations
- Mixed formulation of
$(\mathcal{Q}(g))$
Discretization and FETI-DP

Numerical study

Reference
There exists a unique solution of $(\mathcal{Q}(g))$ for every $g \in H_{-}^{-1 / 2}\left(\Gamma_{c}\right)$.
Let $\Phi: H_{-}^{-1 / 2}\left(\Gamma_{c}\right) \mapsto H_{-}^{-1 / 2}\left(\Gamma_{c}\right)$ be a mapping defined by

$$
\Phi(g)=\lambda, \quad g \in H_{-}^{-1 / 2}\left(\Gamma_{c}\right) .
$$

Compairing (\mathcal{Q}) and $(\mathcal{Q}(g))$ we see that (u, λ) solves (\mathcal{Q}) iff λ is a fixed point of Φ :

$$
\Phi(\lambda)=\lambda .
$$

Method of successive approximations

Continuous formulation

- Geometry (in 2D)
- Classical formulation
- Weak formulation
- Time discretization
- Fixed point approach
- Method of successive approximations
- Mixed formulation of $(\mathcal{Q}(g))$

Discretization and FETI-DP

Numerical study

Reference

Let $\lambda^{(0)} \in H_{-}^{-1 / 2}\left(\Gamma_{c}\right)$ be given, $k:=1$;

$$
\text { if } \lambda^{(k)} \in H_{-}^{-1 / 2}\left(\Gamma_{c}\right), k \geq 1 \text { is known, }
$$

$$
\text { solve }\left(\mathcal{Q}\left(\lambda^{(k)}\right)\right) \text { and set } \lambda^{(k+1)}:=\lambda,
$$

$$
\text { where }(u, \lambda) \text { is a solution of }\left(\mathcal{Q}\left(\lambda^{(k)}\right)\right) \text {; }
$$

$$
k:=k+1 ;
$$

repeat until stopping criterion

Mixed formulation of $(\mathcal{Q}(g))$

Let

Continuous formulation

- Geometry (in 2D)
- Classical formulation
- Weak formulation
- Time discretization
- Fixed point approach
- Method of successive approximations
- Mixed formulation of
$(\mathcal{Q}(g))$

Discretization and FETI-DP

Numerical study

Reference

$$
\begin{aligned}
\Lambda_{\nu} & =H_{-}^{-1 / 2}\left(\Gamma_{c}\right) \\
\Lambda_{T}(g) & =\left\{\mu_{T} \in L^{2}\left(\Gamma_{c}\right)| | \mu_{T} \mid \leq \mathcal{F} g \text { a.e. on } \Gamma_{c}\right\}, \quad g \in L_{+}^{2}\left(\Gamma_{c}\right) .
\end{aligned}
$$

Mixed formulation of $(\mathcal{Q}(g))$ reads as follows:

$$
\left.\begin{array}{l}
\text { Find }\left(u, \lambda_{\nu}, \lambda_{T}\right) \in \mathbb{V} \times \Lambda_{\nu} \times \Lambda_{T}(g) \text { such that } \\
a(u, w)=L(w)+\left\langle\lambda_{\nu}, w_{\nu}\right\rangle+\left\langle\lambda_{T}, w_{T}\right\rangle \quad \forall w \in \mathbb{V} \\
\left\langle\mu_{\nu}-\lambda_{\nu}, u_{\nu}\right\rangle \geq 0 \quad \forall \mu_{\nu} \in \Lambda_{\nu} \tag{g}\\
\left\langle\mu_{T}-\lambda_{T}, u_{T}\right\rangle \geq\left\langle\mu_{T}-\lambda_{T}, v_{T}\right\rangle \forall \mu_{T} \in \Lambda_{T}(g) .
\end{array}\right\}
$$

It holds:

- $u \in K$ solves $(\mathcal{Q}(g))$;
- $\lambda_{\nu}=\tau_{\nu}(u)_{\left.\right|_{c}}, \lambda_{T}=\tau_{T}(u)_{\Gamma_{\Gamma_{c}}}$ on Γ_{c}.

Substructuring by the FETI-DP method

Continuous formulation

Discretization and FETI-DP

- Substructuring by the FETI-DP method
- Discretization and FETI-DP
- QP problem with box
constraints
- Matrix in Feti-DP saddle point problem

Numerical study

Reference

Let $\Omega=\bigcup_{i=1}^{q} \Omega_{i}$ be a polygonal domain.

$$
\Gamma=\bigcup_{k=1}^{p} \Gamma_{k}, \quad \Gamma_{k}=\partial \Omega_{i} \cap \partial \Omega_{j} \ldots \quad \text { skeleton } \Gamma
$$

Discretization and FETI-DP

Discretization of primal variables

Continuous formulation

Discretization and FETI-DP

- Substructuring by
the FETI-DP method
- Discretization and FETI-DP
- QP problem with box
constraints
- Matrix in Feti-DP saddle point problem

Numerical study

Reference

Let \mathcal{T}_{i} be a triangulation of $\bar{\Omega}_{i}, i=1, \ldots, q$, such that

$$
\mathcal{T}_{i \mid \Gamma_{k}}=\mathcal{T}_{j \mid \Gamma_{k}}, \quad \Gamma_{k}=\partial \Omega_{i} \cap \partial \Omega_{j} .
$$

System $\mathcal{T}=\left\{\mathcal{T}_{i}\right\}_{i=1}^{q}$ creates a triangulation of $\bar{\Omega}$.

$$
\begin{aligned}
& \mathbb{X}_{i}^{r}=\left\{v \in\left(C\left(\bar{\Omega}_{i}\right)\right)^{2} \mid v_{\left.\right|_{T}} \in\left(P_{1}(T)\right)^{2} \forall T \in \mathcal{T}_{i},\right. \\
&\left.v=0 \text { on } \partial \Omega_{i} \cap \bar{\Gamma}_{u}, v=0 \text { at "corners" } C\right\} \\
& \mathbb{X}^{r}=\mathbb{X}_{1}^{r} \times \mathbb{X}_{2}^{r} \times \cdots \times \mathbb{X}_{q}^{r} \\
& \mathbb{X}^{c}=\left\{\varphi_{a}, a \in C\right\},
\end{aligned}
$$

where $\varphi_{a} \in \mathbb{V}_{h}$ is the Courant basis function at a. We set

$$
\mathbb{X}=\mathbb{X}^{r} \oplus \mathbb{X}^{c}
$$

It holds:

$$
(v \in \mathbb{X}) \wedge([v]=0 \text { on } \Gamma) \Rightarrow v \in \mathbb{V}
$$

Discretization and FETI-DP

Discretization of dual variables

Continuous formulation

Discretization and FETI-DP

- Substructuring by the FETI-DP method
- Discretization and FETI-DP
- QP problem with box
constraints
- Matrix in Feti-DP saddle point problem

Numerical study

Reference

$$
\begin{aligned}
L & =\left\{\mu \in L^{2}\left(\Gamma_{c}\right) \mid \quad \mu_{I} \in P_{0}(I) \quad \forall I \in \Delta \Gamma_{c}\right\} \\
\Lambda_{\nu} & =\left\{\mu \in L \mid \quad \mu \leq 0 \text { a.e. on } \Gamma_{c}\right\} \\
\Lambda_{T} & =\left\{\mu \in L|\quad| \mu^{i} \mid \leq \mathcal{F} g^{i} \forall I \in \Gamma_{c}\right\} \\
\langle\mu, v\rangle_{\Gamma_{c}}: & =\sum_{i \in \mathcal{I}} \mu^{i} v\left(a_{i}\right)\left|I_{i}\right|, \quad\left|I_{i}\right| \ldots \text { length } I_{i}
\end{aligned}
$$

Discretization and FETI-DP

Discretization of dual variables

Continuous formulation
Discretization and FETI-DP

- Substructuring by the FETI-DP method
- Discretization and FETI-DP
- QP problem with box
constraints
- Matrix in Feti-DP saddle point problem

Numerical study

Reference

To remove discontinuity of functions on int Γ we introduce a new set Λ_{Γ} of Lagrange multipliers on Γ :

$$
\Lambda_{\Gamma}=\Lambda_{\Gamma_{1}} \times \cdots \times \Lambda_{\Gamma_{p}}
$$

where $\Lambda_{\Gamma_{k}}, k=1, \ldots, p$ are chosen in such a way that the following conditions are satisfied:

$$
\begin{aligned}
& \mu_{k} \in \Lambda_{\Gamma_{k}} \\
& \wedge
\end{aligned}\left\langle\mu_{k}, w_{k}\right\rangle_{\Gamma_{k}}=0 \quad \forall w_{k} \in W_{k} \quad \Rightarrow \quad \mu_{k}=0
$$

and

$$
W_{k}=\mathbb{X}_{\left.i\right|_{\Gamma_{k}}}^{r}=\mathbb{X}_{\left.j\right|_{\Gamma_{k}}}^{r}, \quad \Gamma_{k}=\partial \Omega_{i} \cap \partial \Omega_{j}
$$

Discretization and FETI-DP

The FETI-DP method reads as follows (the index h is omitted):

$$
\begin{aligned}
& \text { Find }\left(u, \lambda_{\Gamma}, \lambda_{\nu}, \lambda_{T}\right) \in \mathbb{X} \times \Lambda_{\Gamma} \times \Lambda_{\nu} \times \Lambda_{T}(g) \text { such that } \\
& \begin{array}{l}
\sum_{i=1}^{q} a_{i}(u, w)=\sum_{i=1}^{q} L_{i}(w)+\left\langle\lambda_{\Gamma},[w]\right\rangle_{\Gamma}+\left\langle\lambda_{\nu}, w_{\nu}\right\rangle_{\Gamma_{c}} \\
\quad+\left\langle\lambda_{T}, w_{T}\right\rangle_{\Gamma_{c}} \quad \forall w \in \mathbb{X} \\
\left\langle\mu_{\nu}-\lambda_{\nu}, u_{\nu}\right\rangle_{\Gamma_{c}}+\left\langle\mu_{T}-\lambda_{T}, u_{T}\right\rangle_{\Gamma_{c}} \geq\left\langle\mu_{T}-\lambda_{T}, v_{T}\right\rangle_{\Gamma_{c}} \\
\forall\left(\mu_{\nu}, \mu_{T}\right) \in \Lambda_{\nu} \times \Lambda_{T}(g)
\end{array} \\
& \left\langle\mu_{\Gamma},[u]\right\rangle_{\Gamma}=0 \quad \forall \mu_{\Gamma} \in \Lambda_{\Gamma},
\end{aligned}
$$

where

$$
\langle,\rangle_{\Gamma}:=\sum_{k=1}^{p}\langle,\rangle_{\Gamma_{k}}
$$

and $[v]$ is the jump of v across int Γ.

Discretization and FETI-DP

Continuous formulation

Discretization and FETI-DP

- Substructuring by the FETI-DP method
- Discretization and FETI-DP
- QP problem with box
constraints
- Matrix in Feti-DP saddle point problem

Numerical study

Reference

The previous problem is equivalent to the following system of equations:

$$
\begin{aligned}
& a_{i}\left(u_{i}, w_{i}^{r}\right)=L_{i}\left(w_{i}^{r}\right)+\left\langle\lambda_{\Gamma},\left[w_{i}^{r}\right]\right\rangle_{\Gamma \cap \partial \Omega_{i}}+\left\langle\lambda_{\nu}, w_{i \nu}^{r}\right\rangle_{\Gamma_{c} \cap \partial \Omega_{i}}+ \\
& \quad\left\langle\lambda_{T}, w_{i T}^{r}\right\rangle_{\Gamma_{c} \cap \partial \Omega_{i}} \quad \forall w_{i}^{r} \in \mathbb{X}_{i}^{r}, i=1, \ldots, q \\
& \sum_{i=1}^{q} a_{i}\left(u_{i}, w^{c}\right)=L\left(w^{c}\right)+\left\langle\lambda_{\nu}, w_{\nu}^{c}\right\rangle_{\Gamma_{c}}+\left\langle\lambda_{T}, w_{T}^{c}\right\rangle_{\Gamma_{c}} \quad \forall w^{c} \in \mathbb{X}^{c} \\
& + \text { conditions for Lagrange multipliers }
\end{aligned}
$$

$$
u_{i}:=u_{\left.\right|_{\Omega_{i}}}, \quad a_{i}:=a_{\left.\right|_{\Omega_{i}}}, \quad L_{i}:=L_{\left.\right|_{\Omega_{i}}}
$$

Elimination of $u_{i}=u_{i}^{r}+u_{i}^{c}$ leads to a quadratic programming problem for $\lambda_{\Gamma}, \lambda_{\nu}$ and λ_{T} with box constraints of the following type:

QP problem with box constraints

Continuous formulation

Discretization and FETI-DP

- Substructuring by
the FETI-DP method
- Discretization and FETI-DP
- QP problem with box
constraints
- Matrix in Feti-DP saddle point problem

Numerical study

Reference

$$
\left.\begin{array}{l}
\text { Find } \boldsymbol{\lambda}:=\left(\boldsymbol{\lambda}_{\Gamma}, \boldsymbol{\lambda}_{\nu}, \boldsymbol{\lambda}_{T}\right) \in \mathbb{R}^{c} \times \mathbb{R}_{-}^{d} \times \boldsymbol{\Lambda}_{T}(\mathbf{g}) \text { such that } \\
\mathcal{S}(\boldsymbol{\lambda})=\min _{\substack{\mu_{\Gamma} \in \mathbb{R}^{c} \\
\mu_{\nu} \in \mathbb{R}^{d} \\
\mu_{T} \in \boldsymbol{\Lambda}_{T}(\mathbf{g})}} \mathcal{S}(\boldsymbol{\mu})
\end{array}\right\}
$$

where

$$
\mathcal{S}(\boldsymbol{\mu})=\frac{1}{2} \boldsymbol{\mu}^{\top} \mathbf{Q} \boldsymbol{\mu}-\boldsymbol{\mu}^{\top} \mathbf{h}
$$

and

$$
\boldsymbol{\Lambda}_{T}(\mathbf{g})=\left\{\boldsymbol{\mu} \in \mathbb{R}^{d}| | \boldsymbol{\mu}_{i} \mid \leq \mathbf{g}_{i}\right\}, \quad \mathbf{g} \in \mathbb{R}_{+}^{d}
$$

For solving this quadratic programming with simple (box) constraints we use the algorithm MPGRP [Dostál, Schöeberl].

Matrix in Feti-DP saddle point problem

Model example

Continuous formulation

Discretization and FETI-DP

Numerical study

- Model example
- History of loading (characterized by $\phi:[0,1] \rightarrow \mathbb{R}^{1}$)
- Dependence on h and
the number of subdomains
- Deformation of Ω at $t=1$ enlarged $300 \times$
- Normal stress and displacement on Γ_{c} at $t=1$
- Tangential stress and displacement on Γ_{c} at $t=1$

Reference
$\Omega=(0,2) \times(0,1)$ (in meters).
Young's modulus $E=21.19 e 10[P a]$,
Poisson's ratio $\sigma=0.277, \quad$ coefficient of friction $\mathcal{F}=0.3$

$$
P_{1}(t)=0
$$

$$
P_{2}(t)=-10 . e 7 \phi(t)
$$

$$
\text { on } \Gamma_{p}^{1}
$$

$$
P_{1}(t)=3 . e 7 \phi(t)
$$

$$
P_{2}(t)=5 . e 7 \phi(t)
$$

$$
\text { on } \Gamma_{p}^{2}
$$

Continuous formulation
Discretization and FETI-DP

Numerical study

- Model example
- History of loading (characterized by $\phi:[0,1] \rightarrow \mathbb{R}^{1}$)
- Dependence on h and
the number of subdomains
- Deformation of Ω at
$t=1$ enlarged
$300 \times$
- Normal stress and displacement on Γ_{c} at $t=1$
- Tangential stress and displacement on Γ_{c} at $t=1$

Reference

$$
\begin{aligned}
& \phi_{1}(t)=t \quad \text { (monotne loading) } \\
& \phi_{2}(t)=-4 t^{2}+5 t \\
& \text { (nonmonotne loading) }
\end{aligned}
$$

Dependence on h and the number of subdomains

$n_{s} \quad$... number of subdomains

Continuous formulation

Discretization and FETI-DP

Numerical study

- Model example
- History of loading (characterized by $\phi:[0,1] \rightarrow \mathbb{R}^{1}$)
- Dependence on h and
the number of subdomains
- Deformation of Ω at $t=1$ enlarged $300 \times$
- Normal stress and displacement on Γ_{c} at $t=1$
- Tangential stress and displacement on Γ_{c} at $t=1$

Reference
$n_{p}, n_{d} \quad \ldots$ number of primal, dual variables, respectively
it ...fixed-point iterations
$n_{m} \quad$...dual matrix multiplications

n_{s}	n_{p}	n_{d}	it	n_{m}
8	1936	260	$135 / 120$	$6515 / 5565$
32	7744	1096	$136 / 121$	$8326 / 7309$
128	30974	4496	$136 / 122$	$11423 / 9844$
512	123904	18208	$135 / 122$	$15206 / 13237$
1024	495616	73280	$146 / 129$	$22887 / 19659$

Deformation of Ω at $t=1$ enlarged $300 \times$

Continuous formulation

Discretization and FETI-DP

Numerical study

- Model example
- History of loading
(characterized by

$$
\left.\phi:[0,1] \rightarrow \mathbb{R}^{1}\right)
$$

- Dependence on h and
the number of subdomains
- Deformation of Ω at
$t=1$ enlarged
$300 \times$
- Normal stress and displacement on Γ_{c}
at $t=1$
- Tangential stress and displacement on Γ_{c} at $t=1$

Reference

Deformation of Ω at $t=1$ enlarged $300 \times$

Continuous formulation

Discretization and FETI-DP

Numerical study

- Model example
- History of loading
(characterized by

$$
\left.\phi:[0,1] \rightarrow \mathbb{R}^{1}\right)
$$

- Dependence on h and
the number of subdomains
- Deformation of Ω at
$t=1$ enlarged
$300 \times$
- Normal stress and displacement on Γ_{c}
at $t=1$
- Tangential stress and displacement on Γ_{c} at $t=1$

Reference

Normal stress and displacement on Γ_{c} at $t=1$

Continuous formulation

Discretization and FETI-DP

Numerical study

- Model example
- History of loading (characterized by $\phi:[0,1] \longrightarrow \mathbb{R}^{1}$)
- Dependence on h and
the number of subdomains
- Deformation of Ω at $t=1$ enlarged $300 \times$
- Normal stress and displacement on Γ_{c} at $t=1$
- Tangential stress and displacement on Γ_{c} at $t=1$

Reference

- displacements

- stresses

Normal stress and displacement on Γ_{c} at $t=1$

Continuous formulation

Discretization and FETI-DP

Numerical study

- Model example
- History of loading (characterized by $\phi:[0,1] \rightarrow \mathbb{R}^{1}$)
- Dependence on h and
the number of subdomains
- Deformation of Ω at
$t=1$ enlarged
$300 \times$
- Normal stress and displacement on Γ_{c} at $t=1$
- Tangential stress and displacement on Γ_{c} at $t=1$

Reference

- displacements

- stresses

Tangential stress and displacement on Γ_{c} at $t=1$

- displacements

Continuous formulation

Discretization and FETI-DP

Numerical study

- Model example
- History of loading (characterized by $\phi:[0,1] \rightarrow \mathbb{R}^{1}$)
- Dependence on h and
the number of subdomains
- Deformation of Ω at
$t=1$ enlarged
$300 \times$
- Normal stress and displacement on Γ_{c} at $t=1$
- Tangential stress and displacement on Γ_{c}
at $t=1$

Reference

Tangential stress and displacement on Γ_{c} at $t=1$

- displacements
- stresses

Discretization and FETI-DP

Numerical study

- Model example
- History of loading (characterized by $\phi:[0,1] \rightarrow \mathbb{R}^{1}$)
- Dependence on h and
the number of subdomains
- Deformation of Ω at
$t=1$ enlarged
$300 \times$
- Normal stress and displacement on Γ_{c} at $t=1$
- Tangential stress and displacement on Γ_{c}
at $t=1$

Reference

Reference

Contact problems with friction (static case)

Theoretical analysis: Duvaut, Lions, Nečas, Jarušek, Eck, Oden, Kikuchi, Frémond, ...

Discretization, numerical realization: Panagiotopoulos, Raous, Cocou, Hild, Laborde, Renard, Bisegna, Lebon, Hlaváček, Kikuchi, Wohlmuth, Krause, ...

Qualitate analysis: Hild, Renard, Ionescu, Balard, ...

