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Classical formulation

equilibrium equations:

∂τij

∂xj

+ Fi = 0 in Ω × (0, T0), i = 1, 2;

linear Hooke’s law:

τij = cijklεkl(u), i, j, k, l = 1, 2;

εkl(u) = 1
2 (∂uk

∂xl
+ ∂ul

∂xk
) ;

classical boundary conditions:

ui = 0 on Γu × (0, T0), i = 1, 2;

Ti := τijνj = Pi on Γp × (0, T0), i = 1, 2 ;
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Classical formulation

Conditions on Γc

unilateral conditions:

uν ≤ 0, τν ≤ 0, uντν = 0 on Γc × (0, T0);

Coulomb’s law of friction:

u̇T (x)=0 ⇒ |τT (x)| ≤ −F(x)τν(x); x ∈ Γc × (0, T0)

u̇T (x) 6=0 ⇒ τT (x) = F(x)τν(x) sign u̇T (x) .

F ∈ C1(Γc) , F ≥ 0

initial condition:

u(0) = u0 in Ω .
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Weak formulation

Notation

V = {v ∈ H1(Ω) | v = 0 on Γu} , V = V × V

K = {v ∈ V | vν ≤ 0 a.e. on Γc}

H1/2(Γc) = V|Γc
(space of traces on Γc of functions from V )

H−1/2(Γc) = (H1/2(Γc))
′ (the dual space to H1/2(Γc))

H−1/2

− (Γc) . . . (cone of all non–positive elements of H−1/2(Γc))

〈 , 〉 . . . duality pairing between H−1/2(Γc) and H1/2(Γc)

Assumptions:

F ∈W 1,2(0, T0, (L
2(Ω))2), P ∈ W 1,2(0, T0, (L

2(Γp))
2)

a(u, v) :=

∫

Ω

τij(u)εij(v) dx , j(λ, v) := −〈Fλ, |vT |〉

L(t)(v) :=

∫

Ω

Fi(t)vi dx +

∫

Γp

Pi(t)vi ds , u, v ∈ V , λ ∈ H−1/2(Γc)
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Weak formulation

Find u ∈ W 1,2(0, T0, V), λ ∈ W 1,2(0, T0, H
−1/2(Γc)) :

u(t) ∈ K for a.a. t ∈ (0, T0), u(0) = u0 in Ω

a(u(t), v − u̇(t)) + j(λ(t), v) − j(λ(t), u̇(t)) ≥

L(t)(v − u̇(t)) + 〈λ(t), vν − u̇ν(t)〉

∀v ∈ V and for a.a t ∈ (0, T0)

〈λ(t), zν − uν(t)〉 ≥ 0 ∀z ∈ K and for a.a t ∈ (0, T0)
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(P)

where
a(u0, v − u0) + j(λ0, v − u0) ≥ L(0)(v − u0) ∀v ∈ K ,

λ0 = τν(u0)|Γc
.

Classical and weak formulations are formally equivalent and

λ = τν(u)|Γc

[Rocca R. and Coccu M. 01]: If suppF ⊂ Γc and F is small
enough, then (P) has at least one solution.
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Time discretization

∆t = T0/n . . . . . . time step, ti = i∆t, ui := u(ti).

• approximation u̇i+1 ≈ ui+1−ui

∆t

• denoting w := ui + ∆tv ∈ V

• writing u instead ui+1 and v instead ui

• skipping the index i

Leads to a implicit mixed formulation:

Find u, λ ∈ V × H−1/2

− (Γc) such that

a(u, w − u) + j(λ, w−v) − j(λ, u−v) ≥

L(w − u) + 〈λ, wν − uν〉 ∀w ∈ V

〈µ − λ, uν〉 ≥ 0 ∀µ ∈ H−1/2

− (Γc) .
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(Q)
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Fixed point approach

With any g ∈ H−1/2

− (Γc) we associate the auxiliary
problem (Q(g)): For v ∈ K given

Find u := u(g) ∈ V, λ := λ(g) ∈ H−1/2

− (Γc) s.t.

a(u, w − u) + j(g, w−v) − j(g, u−v) ≥

L(w − u) + 〈λ, wν − uν〉 ∀w ∈ V

〈µ − λ, uν〉 ≥ 0 ∀µ ∈ H−1/2

− (Γc) ,























(Q(g))

There exists a unique solution of (Q(g)) for every
g∈H−1/2

− (Γc).

Let Φ : H−1/2

− (Γc) 7→ H−1/2

− (Γc) be a mapping defined by

Φ(g) = λ , g ∈ H−1/2

− (Γc) .

Compairing (Q) and (Q(g)) we see that (u, λ) solves (Q) iff λ
is a fixed point of Φ:

Φ(λ) = λ .
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Method of successive approximations

Let λ(0) ∈ H−1/2

− (Γc) be given, k := 1;

if λ(k) ∈ H−1/2

− (Γc), k ≥ 1 is known,

solve (Q(λ(k))) and set λ(k+1) := λ,

where (u, λ) is a solution of (Q(λ(k)));

k := k + 1;

repeat until stopping criterion
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Mixed formulation of (Q(g))

Let

Λν = H−1/2

− (Γc)

ΛT (g) = {µT ∈ L2(Γc)| |µT | ≤ Fg a.e. on Γc} , g ∈ L2
+(Γc) .

Mixed formulation of (Q(g)) reads as follows:

Find (u, λν , λT ) ∈ V × Λν × ΛT (g) such that

a(u, w) = L(w) + 〈λν , wν〉 + 〈λT , wT 〉 ∀w ∈ V

〈µν − λν , uν〉 ≥ 0 ∀µν ∈ Λν

〈µT − λT , uT 〉 ≥ 〈µT − λT , vT 〉 ∀µT ∈ ΛT (g) .












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



(M(g))

It holds:
• u ∈ K solves (Q(g));
• λν = τν(u)|Γc

, λT = τT (u)|Γc
on Γc .
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Substructuring by the FETI-DP method

Let Ω =

q
⋃

i=1

Ωi be a polygonal domain.

Γu

Γp

Γc

Ωi

S

Γ =

p
⋃

k=1

Γk , Γk = ∂Ωi ∩ ∂Ωj . . . skeleton Γ
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Discretization and FETI-DP

Discretization of primal variables
Let T i be a triangulation of Ωi, i = 1, . . . , q, such that

T i|Γk
= T j |Γk

, Γk = ∂Ωi ∩ ∂Ωj .

System T = {T i}
q
i=1 creates a triangulation of Ω.

X
r
i = {v ∈ (C(Ωi))

2| v|T ∈ (P1(T ))2 ∀T ∈ T i,

v = 0 on ∂Ωi ∩ Γu, v = 0 at ”corners” C}

X
r = X

r
1 × X

r
2 × · · · × X

r
q

X
c = {ϕa , a ∈ C} ,

where ϕa ∈ Vh is the Courant basis function at a. We set

X = X
r ⊕ X

c .

It holds:
(v ∈ X) ∧ ([v] = 0 on Γ) ⇒ v ∈ V .
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Discretization and FETI-DP

Discretization of dual variables
We construct the partition ∆Γc of Γc into segments
I ∈ ∆Γc so, that there is one–to–one correspondence
between contact nodes ai and segments Ii ∈ ∆Γc.

L = {µ ∈ L2(Γc)| µ|I ∈ P0(I) ∀I ∈ ∆Γc}

Λν = {µ ∈ L| µ ≤ 0 a.e. on Γc}

ΛT = {µ ∈ L| |µi| ≤ Fgi ∀I ∈ Γc}

〈µ, v〉Γc :=
∑

i∈I

µiv(ai)|Ii|, |Ii| . . . length Ii



Continuous formulation

Discretization and FETI-DP

•Substructuring by

the FETI-DP method
•Discretization and FETI-DP

•QP problem with box

constraints
•Matrix in Feti-DP saddle

point problem

Numerical study

Reference

SNA 2007, 22-26.1.2007, Ostrava - p. 10

Discretization and FETI-DP

Discretization of dual variables
To remove discontinuity of functions on int Γ we introduce
a new set ΛΓ of Lagrange multipliers on Γ:

ΛΓ = ΛΓ1 × · · · × ΛΓp ,

where ΛΓk
, k = 1, . . . , p are chosen in such a way that

the following conditions are satisfied:

µk ∈ ΛΓk
∧ 〈µk, wk〉Γk

= 0 ∀wk ∈ Wk ⇒ µk = 0

wk ∈ Wk ∧ 〈µk, wk〉Γk
= 0 ∀µk ∈ ΛΓk

⇒ wk = 0

and
Wk = X

r
i |Γk

= X
r
j |Γk

, Γk = ∂Ωi ∩ ∂Ωj
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Discretization and FETI-DP

The FETI-DP method reads as follows (the index h is
omitted):

Find (u, λΓ, λν , λT ) ∈ X × ΛΓ × Λν × ΛT (g) such that
q

∑

i=1

ai(u, w) =
q
∑

i=1

Li(w) + 〈λΓ, [w]〉Γ + 〈λν , wν〉Γc

+〈λT , wT 〉Γc ∀w ∈ X

〈µν − λν , uν〉Γc + 〈µT − λT , uT 〉Γc ≥ 〈µT − λT , vT 〉Γc

∀(µν , µT ) ∈ Λν × ΛT (g)

〈µΓ, [u]〉Γ = 0 ∀µΓ ∈ ΛΓ ,











































where

〈 , 〉Γ :=

p
∑

k=1

〈 , 〉Γk

and [v] is the jump of v across int Γ.
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Discretization and FETI-DP

The previous problem is equivalent to the following system of
equations:

ai(ui, w
r
i ) = Li(w

r
i ) + 〈λΓ, [wr

i ]〉Γ∩∂Ωi + 〈λν , wr
iν〉Γc∩∂Ωi+

〈λT , wr
iT 〉Γc∩∂Ωi ∀wr

i ∈ X
r
i , i = 1, . . . , q

q
∑

i=1

ai(ui, w
c) = L(wc) + 〈λν , wc

ν〉Γc + 〈λT , wc
T 〉Γc ∀wc ∈ X

c

+ conditions for Lagrange multipliers



























ui := u|Ωi
, ai := a|Ωi

, Li := L|Ωi

Elimination of ui = ur
i + uc

i leads to a quadratic programming
problem for λΓ, λν and λT with box constraints of
the following type:
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QP problem with box constraints

Find λ := (λΓ, λν , λT ) ∈ R
c × R

d
− × ΛT (g) such that

S(λ) = min
µΓ∈R

c

µν∈R
d
−

µT ∈ΛT (g)

S(µ)















where

S(µ) =
1

2
µ⊤Qµ − µ⊤h

and
ΛT (g) = {µ ∈ R

d| |µi| ≤ gi} , g ∈ R
d
+ .

For solving this quadratic programming with simple (box)
constraints we use the algorithm MPGRP [Dostál,
Schöeberl].
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Matrix in Feti-DP saddle point problem
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Model example

Ω = (0, 2) × (0, 1) (in meters).
Young’s modulus E = 21.19e10[Pa],
Poisson’s ratio σ = 0.277, coefficient of friction F = 0.3

P1(t) = 0. , P2(t) = −10.e7φ(t) , on Γ1
p

P1(t) = 3.e7φ(t) , P2(t) = 5.e7φ(t) , on Γ2
p

S

P

ΩΓu

Γc

Γ1
p

Γ2
p
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History of loading (characterized by φ : [0, 1] → R
1)

φ1(t) = t (monotne loading)

φ2(t) = −4t2 + 5t (nonmonotne loading)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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0.4
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0.8

1

1.2
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Dependence on h and the number of subdomains

ns . . . number of subdomains
np, nd . . . number of primal, dual variables, respectively
it . . . fixed–point iterations
nm . . . dual matrix multiplications

ns np nd it nm

8 1936 260 135/120 6515/ 5565

32 7744 1096 136/121 8326/ 7309

128 30974 4496 136/122 11423/ 9844

512 123904 18208 135/122 15206/13237

1024 495616 73280 146/129 22887/19659
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Deformation of Ω at t = 1 enlarged 300×

φ1
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Deformation of Ω at t = 1 enlarged 300×
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Normal stress and displacement on Γc at t = 1

— displacements
— stresses

φ1

0 0.5 1 1.5 2

−10

−8

−6

−4

−2

0
x 10

7

0 0.5 1 1.5 2
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

−4



Continuous formulation

Discretization and FETI-DP

Numerical study

•Model example

•History of loading

(characterized by

φ : [0, 1] → R
1 )

•Dependence on h and

the number of subdomains
•Deformation of Ω at

t = 1 enlarged

300×
•Normal stress and

displacement on Γc
at t = 1

•Tangential stress and

displacement on Γc
at t = 1

Reference

SNA 2007, 22-26.1.2007, Ostrava - p. 17

Normal stress and displacement on Γc at t = 1

— displacements
— stresses
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Tangential stress and displacement on Γc at t = 1

— displacements
— stresses
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1 )

•Dependence on h and

the number of subdomains
•Deformation of Ω at

t = 1 enlarged

300×
•Normal stress and

displacement on Γc
at t = 1

•Tangential stress and
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at t = 1
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Tangential stress and displacement on Γc at t = 1
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Continuous formulation

Discretization and FETI-DP

Numerical study

Reference
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