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1. NOTATION

A polynomial is written as

f(x) =
m
∑

i=0

aiφi(x)

where φi(x), i = 0, . . . , m, is a set of linearly independent polynomial basis

functions and ai, i = 0, . . . , m is a set of coefficients.

The power basis: φi(x) = xi, i = 0, . . . , m

The Bernstein basis: φi(x) =
(

m
i

)

(1 − x)m−ixi, i = 0, . . . , m

The scaled Bernstein basis: φi(x) = (1 − x)m−ixi, i = 0, . . . , m
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Example 1.1 A third order polynomial is written as:

The power basis:

f(x) = a0 + a1x + a2x
2 + a3x

3

The Bernstein basis:

f(x) = b0

((

3

0

)

(1 − x)3
)

+ b1

((

3

1

)

(1 − x)2x

)

+b2

((

3

2

)

(1 − x)x2

)

+ b3

((

3

3

)

x3

)

The scaled Bernstein basis:

f(x) = c0(1 − x)3 + c1(1 − x)2x + c2(1 − x)x2 + c3x
3

�
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The power basis: The most frequently used polynomial basis

The Bernstein basis: Used extensively in geometric modelling because of its elegant

geometric properties and numerical stability:

((1 − x) + x)
m

=
m
∑

i=0

(

m

i

)

(1 − x)m−ixi = 1

The scaled Bernstein basis: Simpler to use than the Bernstein basis, and easy

to convert between the scaled Bernstein basis and the Bernstein basis. From

Example 1.1

ci =

(

m

i

)

bi, i = 0, . . . , m
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The norm of a polynomial

It is assumed that:

• The coefficients of f(x) are real

• A polynomial of degree m can be identified with a vector space of dimension

m + 1

• The elements of vectors that lie in this space are the coefficients of f(x) with

respect to the basis functions φi(x), i = 0, . . . , m

The 2-norm of f(x) is equal to the 2-norm of the vector a of its coefficients

‖f(x)‖ = ‖a‖ =

(

m
∑

i=0

a2
i

)
1

2

Unless stated otherwise, the 2-norm is used exclusively, ‖·‖ = ‖·‖2.
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2. INTRODUCTION

Four problems:

1. Computation of an approximate greatest common divisor (AGCD)

Calculate an AGCD of the polynomials

f(x) = (x − 1)8(x − 2)16(x − 3)24 + ǫ1

g(x) = (x − 1)12(x + 2)4(x − 3)8(x + 4)2 + ǫ2

Some applications: Pole-zero cancellation in control systems, error control cod-

ing and a novel algorithm to compute the roots of a polynomial

Extend to polynomials expressed in the Bernstein basis
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2. Structured low rank approximation of the Sylvester resultant matrix


























1 0 0 1 0 0

−5 1 0 −5.99 1 0

8 −5 1 10.96 −5.99 1

−4 8 −5 −5.97 10.96 −5.99

0 −4 8 0 −5.97 10.96

0 0 −4 0 0 −5.97



























The singular values are
[

25.314 14.959 5.5837 0.42448 2.6536e − 06 6.6615e − 16
]

Application: Intersection problems in geometric modelling

Extend to polynomials expressed in the Bernstein basis
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3. A robust algorithm for computing the roots of a polynomial

Calculate the roots of the polynomial

f(x) = (x − 1)20(x − 2)30(x − 3)40 + ǫ1

Extend to polynomials expressed in the Bernstein basis

4. The principle of maximum likelihood for the estimation of the rank of a matrix

Estimate the rank of an arbitrary matrix that is corrupted by noise of unknown

magnitude

Applications: Signal processing, AGCD computations, regularisation
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2.1 Historical background and difficulties of computing polynomial roots

There exist many algorithms for computing the roots of a polynomial:

• Bairstow, Graeffe, Jenkins-Traub, Laguerre, Müller, Newton ...

These methods yield satisfactory results if:

• The polynomial is of moderate degree

• The roots are simple and well-separated

• A good starting point in the iterative scheme is used

This heuristic has exceptions:

f(x) =
20
∏

i=1

(x − i) = (x − 1)(x − 2) · · · (x − 20)

10



'

&

$

%

Example 2.1 Consider the polynomial

x4 − 4x3 + 6x2 − 4x + 1 = (x − 1)4

whose root is x = 1 with multiplicity 4. MATLAB returns the roots

1.0002, 1.0000 + 0.0002i, 1.0000 - 0.0002i, 0.9998 �

Example 2.2 The roots of the polynomial (x − 1)100 were computed by MATLAB.

0 1 2 3 4 5 6
−4

−3

−2

−1

0

1

2

3

4

Real

Im
ag

Figure 2.1: The

computed roots of

(x − 1)100.

�
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Example 2.3 Consider the roots (x − 1)m due to a perturbation of −2−10 in the

constant coefficient.

x = 1 +
1

2
10

m

(

cos
2πk

m
+ i sin

2πk

m

)

, k = 0, . . . , m − 1.

0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.2: Perturbation regions of (x − 1)m, m = 1, 6, 11, . . . , when the con-

stant term is perturbed by −2−10. �
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A robust algorithm to compute the multiple roots of a polynomial includes:

• AGCD computations

• Structured low rank approximations of the Sylvester resultant matrix

• The estimation of the rank of a matrix
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3. CONDITION NUMBERS AND ERRORS

All computations must consider the effects of errors. Common sources of error in

computation include:

• Modelling errors

– A low dimensional approximation of a high dimensional system

– The restriction to low order terms

• Roundoff errors – Due to floating point arithmetic

• Data errors – Experimental data is inexact

• Discretisation errors – The use of the finite element or finite difference methods

to solve a partial differential equation

14
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3.1 Backward errors and the forward error

The forward error is a measure of the error δx0 in the solution x0

forward error =
|δx0|
|x0|

• The exact solution x0 is not known a priori, and so the forward error is not a

practical measure of the error.

• The backward error is a more practical error measure because it does not require

knowledge of the exact solution.

Note the difference:

The forward error is measured in the solution space

The backward error is measured in the data space

15
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Input space Output space

backward
error forward 

error 

x y = g(x)

x + δx

ŷ = g(x + δx)

Figure 3.1: Backward and forward errors for y = g(x). The solid lines represent

exact computations, and the dashed line represents the computed approximation.

• A small forward error means that the error in the computed solution is small.

• A small backward error means that the approximate solution is the theoretically

exact solution of a problem that is near the problem whose solution is desired.
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How are the forward and backward errors related?

forward error = condition number × backward error

Note: This equation takes on a more complex form for multiple roots of a polynomial.

• The forward error is the error in the solution:
|δx0|
|x0|

• The backward error is the ‘distance’ between two problems. How is it defined?

• What is the condition number and how is it defined?

17
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3.1.1 Backward errors

The backward error is the ‘distance’ between two problems.

It is required to compute the roots of the polynomial

f1(x) =

m
∑

i=0

aiφi(x)

but roundoff errors and the iterative nature of most root finding algorithms cause

errors in the solution, such that the roots of the neighbouring polynomial

f2(x) =
m
∑

i=0

(ai + δai)φi(x)

are computed.

What is the backward error of the computed root x̃0 of f2(x)?

18
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The backward error of a computed root x̃0 of f2(x) is the minimum amount that the

coefficients of f1(x) must move such that it has a root x̃0 = x0 + δx0:

f1(x0) =

m
∑

i=0

aiφi(x0) = 0 and f1(x̃0) =

m
∑

i=0

aiφi(x̃0) 6= 0

but

f2(x̃0) =
m
∑

i=0

(ai + δai)φi(x̃0) = 0

19
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There are two types of backward error:

• Componentwise backward error

The relative error in each coefficient has an upper bound:

|δai| ≤ εc |ai| , i = 0, . . . , m

The componentwise backward error is the minimum value of εc that satisfies this

inequality, such that f2(x̃0) = 0.

• Normwise backward error

The relative error in the coefficients has an upper bound:

‖δa‖ ≤ εn ‖a‖

The normwise backward error is the minimum value of εn that satisfies this in-

equality, such that f2(x̃0) = 0.

20
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Why is backward error analysis important?

• Backward error analysis interprets all the errors (data errors, roundoff errors,

etc.) as being equivalent to perturbations in the data.

• If the backward error is less than the error in the data, then the computed solution

is acceptable.

• An expression for the backward error of an approximate solution is independent

of the method used for its computation.

21
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Definition 3.1 Componentwise backward error

The componentwise backward error of the approximation x̃0, which may be complex,

of the root x0 of f(x) is defined as

ηc(x̃0) = min

{

εc :
m
∑

i=0

ãiφi (x̃0) = 0 and |δai| ≤ εc |ai| ; ã = a + δa

}

=
|f (x̃0)|

∑m

i=0 |aiφi (x̃0)|
The perturbations in the coefficients that achieve this backward error are

δak = −
(

akf (x̃0)
∑m

i=0 |aiφi (x̃0)|

)

(

akφk (x̃0)

|akφk (x̃0)|

)

, k = 0, . . . , m

22
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Definition 3.2 Normwise backward error

The normwise backward error of the approximation x̃0, which may be complex, of

the root x0 of f(x) is defined as

ηn(x̃0) = min

{

εn :
m
∑

i=0

ãiφi (x̃0) = 0 and ‖δa‖ ≤ εn ‖a‖ ; ã = a + δa

}

=
|f (x̃0)|

‖φ (x̃0)‖ ‖a‖
The perturbations in the coefficients that achieve this backward error are

δai =
f (x̃0) vi (x̃0)

‖φ (x̃0)‖
, v (x̃0)

T
φ (x̃0) = −‖φ (x̃0)‖ , ‖v (x̃0)‖ = 1

23
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3.2 Condition numbers

The forward and backward errors are related by the condition number of the problem,

which is a measure of the sensitivity of the solution to perturbations in the data.

Example 3.1 Consider the evaluation of the function y = g(x) at the point x = x0,

and assume that the computed solution is in error.

y + δy = g(x0 + δx0) = g(x0) + g(1)(x0)δx0 +
g(2)(x0)

2
(δx0)

2

Thus, to first order

δy

y
=

(

x0g
(1)(x0)

g(x0)

)

δx0

x0

The quantity
∣

∣

∣

∣

x0g
(1)(x0)

g(x0)

∣

∣

∣

∣

is the condition number of x0. �
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The condition number of x0 is a measure of the relative change in the output y for a

given relative change in the input x:

• A root of a polynomial is ill-conditioned if its condition number is large

• A root of a polynomial is well-conditioned if its condition number is small

Extend this concept to polynomials:

• If the coefficients of the polynomial change by a small amount, how do the roots

change?

• Use componentwise and normwise error models to define the perturbations in

the coefficients, and thus obtain a componentwise condition number and a norm-

wise condition number.

25
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3.2.1 The componentwise condition number of a root of a polynomial

Theorem 3.1 Let the coefficients ai of f(x) be perturbed to ai+δai where |δai| ≤
εc |ai| , i = 0 . . .m. Let the real root x0 of f(x) have multiplicity r, and let one of

these r roots be perturbed to x0 + δx0 due to the perturbations in the coefficients.

Then the componentwise condition number of x0 is

κc (x0) = max
|δai|≤εc|ai|

|δx0|
|x0|

1

εc

=
1

ε
1− 1

r

c

1

|x0|

(

r!
∣

∣f (r) (x0)
∣

∣

m
∑

i=0

|aiφi (x0)|
)

1

r

If r ≫ 1

κc (x0) ≈
1

εc

= upper bound of componentwise signal-to-noise ratio

κc(x0) defines a circular region in the complex plane in which x0 + δx0 lies.

26
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3.2.2 The normwise condition number of a root of a polynomial

Theorem 3.2 Let the coefficients ai of f(x) be perturbed to ai+δai where ‖δa‖ ≤
εn ‖a‖. Let the real root x0 of f(x) have multiplicity r, and let one of these r roots

be perturbed to x0 + δx0 due to the perturbations in the coefficients. Then the

normwise condition number of x0 is

κn (x0) = max
‖δa‖≤εn‖a‖

|δx0|
|x0|

1

εn

=
1

ε
1− 1

r

n

1

|x0|

(

r!
∣

∣f (r) (x0)
∣

∣

‖a‖ ‖φ (x0)‖
)

1

r

If r ≫ 1

κn (x0) ≈
1

εn

= upper bound of normwise signal-to-noise ratio

κn(x0) defines a circular region in the complex plane in which x0 + δx0 lies.
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3.3 Limitations of the condition numbers

The formulae for κc(x0) and κn(x0) assume that the lowest order term is used in

the Taylor series of the perturbed polynomials:

• What are the implications of this assumption?

• When is the assumption valid, and when is it not valid?

Analogy:

• When two magnets are well separated, their magnetic fields do not not interact.

– As the distance between the magnets decreases, the magnetic fields interact.

• When two polynomial roots are well separated, the roots can be considered in

isolation.

– As the distance between the roots decreases, they interact and the condition

number of a given root is a function of its neighbouring close roots.

28
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Since x0 is a root of multiplicity r of f(x)

f (x0 + δx0) =
n
∑

k=0

δxk
0

k!
f (k) (x0)

=
δxr

0

r!
f (r) (x0) +

δxr+1
0

(r + 1)!
f (r+1) (x0) + higher order terms

≈ δxr
0

r!
f (r) (x0)

if
∣

∣

∣

∣

δxr
0

r!
f (r) (x0)

∣

∣

∣

∣

≫
∣

∣

∣

∣

δxr+1
0

(r + 1)!
f (r+1) (x0) + higher order terms

∣

∣

∣

∣

• The validity of this inequality decreases as two or more roots merge
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Example 3.2 Consider the polynomial

f(x) = (x − 1)2(x − 1 − α) = x3 − (3 + α)x2 + (3 + 2α)x − (1 + α)

and let εc = 10−7.

Use the complete Taylor expansion, up to and including third order terms, and con-

sider the perturbation regions of

x0 = 1 (twice) and x1 = 1 + α

Note: If only the lowest order term is retained, the perturbation region of each root is

a circle.

30
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Figure 3.2: The perturbation regions, in the complex plane, for the double root x0 =

1 and the simple root x1 = (1 + α), for several values of α.
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Figure 3.3: The perturbation regions, in the complex plane, for the double root x0 =

1 and the simple root x1 = (1 + α), for several values of α.
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f(x) = (x − 1)2(x − 1 − α)

= x3 − (3 + α)x2 + (3 + 2α)x − (1 + α)

Roots of f(x) and their condition numbers using the lowest order term only:

x0 = 1 (twice) κc (x0) = 2√
εc

(

2+α
α

)
1

2

x1 = 1 + α κc (x1) = 2
(

2+α
α

)2

When α = 0 :

g(x) = f(x)|α=0 = (x − 1)3

The root of g(x) and its condition number using the lowest order term only:

x2 = 1 (three times) κc(x2) = 2

ε
2

3
c
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Figure 3.4: The variation of the logarithm, to base 10, of (a) the condition number

of the double root x0 = 1 using all terms in the Taylor series, (b) κc(x0) using the

lowest order term only, and (c) κc(x2) of the treble root x2 = 1 of the polynomial

(x − 1)3 = 0, against log10 α.
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Figure 3.5: The variation of the logarithm, to base 10, of (a) the condition number of

the simple root x1 = 1+α using all terms in the Taylor series, (b) κc(x1) using the

lowest order term only, and (c) κc(x2) of the treble root x2 = 1 of the polynomial

(x − 1)3 = 0, against log10 α. �
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3.4 Principal axes of perturbed roots

Figures 3.2 and 3.3 define the regions in which the perturbed roots may lie.

• Are the perturbed roots randomly scattered in this region, or do they only lie in

some portions of the regions, and not other portions?

Example 3.3 Consider the polynomial in Example 3.2

f(x) = (x − 1)2(x − 1 − α) = x3 − (3 + α)x2 + (3 + 2α)x − (1 + α)

and let εc = 10−7. Compute the roots of this polynomial 1000 times and consider

the distribution of the roots.
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Figure 3.6a: The regions within which the roots of the perturbed polynomial f(x) lie,

and their principal axes, for two values of α.

37



'

&

$

%

0.99 0.995 1 1.005 1.01 1.015 1.02 1.025
−8e−3

−6e−3

−4e−3

−2e−3

0

2e−3

4e−3

6e−3

8e−3

α = 0.017698     ε
c
 = 1e−007

0.99 0.995 1 1.005 1.01 1.015 1.02 1.025
−8e−3

−6e−3

−4e−3

−2e−3

0

2e−3

4e−3

6e−3

8e−3

α = 0.017783     ε
c
 = 1e−007

Figure 3.6b: The regions within which the roots of the perturbed polynomial f(x) lie,

and their principal axes, for two values of α.
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Figure 3.6c: The regions within which the roots of the perturbed polynomial f(x) lie,

and their principal axes, for two values of α. �
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3.5 Condition numbers, backward errors and the forward error

The forward error, backward error and condition number are related

|δx0|
|x0|

= κc(x0)

(

ηc(x̃0)

εc

)
1

r

εc

|δx0|
|x0|

= κn(x0)

(

ηn(x̃0)

εn

)
1

r

εn

If x0 is a simple root (r = 1)

forward error of x0 = condition number of x0 × backward error of x̃0

If x0 is a root of high multiplicity (r ≫ 1)

relative error of x0 = condition number of x0 × upper bound

of signal-to-noise ratio
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Input space Output space

backward
error forward 

error 

a x0

a + δa

x + δx0

Figure 3.7: The condition number of a simple root x0 of a polynomial with coefficients

a is the ratio of the forward error to the backward error.
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A multiple root breaks up into a cluster of closely spaced roots due to roundoff errors,

or when one or more of its coefficients is perturbed.

• Can simple averaging be used to regroup closely spaced roots?

– If the radius of the cluster is small, and it is sufficiently far from the nearest

neighbouring cluster or isolated root, then a simple interpretation of the com-

puted solution is the approximation of the cluster of roots by a multiple root at

the arithmetic mean of the cluster.

Does this simple method always work?
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Figure 3.8: The root distribution of four perturbed polynomials.
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4. THE GEOMETRY OF ILL-CONDITIONED POLYNOMIALS

• A root x0 of multiplicity r introduces (r − 1) constraints on the coefficients.

• A monic polynomial of degree m has m degrees of freedom.

• The root x0 lies on a manifold of dimension (m−r+1) in a space of dimension

m.

• This manifold is called a pejorative manifold because polynomials near this man-

ifold are ill-conditioned.

• A polynomial that lies on a pejorative manifold is well-conditioned with respect to

(the structured) perturbations that keep it on the manifold, which corresponds to

the situation in which the multiplicity of the roots is preserved.

• A polynomial is ill-conditioned with respect to perturbations that move it off the

manifold, which corresponds to the situation in which a multiple root breaks up

into a cluster of simple roots.
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Example 4.1 Consider the problem of determining the roots of the polynomial

f(x) = (x + 1 +
√

ǫ)(x + 1 −
√

ǫ)

x0 = −1 −
√

ǫ and x1 = −1 +
√

ǫ

and thus

dx0

dǫ
= − 1

2
√

ǫ
and

dx1

dǫ
=

1

2
√

ǫ

A monic quadratic polynomial is of the form x2 + bx+ c, and a double root exists if

b2 = 4c

All real quadratic monic polynomials whose coefficients lie on the curve in (b, c) ∈
R

2 have a double root, and this curve is therefore the pejorative manifold for this

class of polynomial.
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The numerical condition

dx0

dǫ
= − 1

2
√

ǫ
and

dx1

dǫ
=

1

2
√

ǫ

of the roots x0, x1 is inversely proportional to the square root of its distance ǫ from

the quadratic polynomial that has a double root.

• This is a particular example of the more general fact that a polynomial is ill-

conditioned if it is near a polynomial that has a multiple root.

• The condition b2 = 4ac is satisfied by ǫ = 0, and the polynomial f(x) lies near

this manifold. This proximity to the manifold is the cause of the ill-conditioning of

this polynomial. �
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Example 4.2 Consider a cubic polynomial f(x) with real roots x0, x1 and x2

(x − x0)(x − x1)(x − x2) = x3 − (x0 + x1 + x2)x
2 +

(x0x1 + x1x2 + x2x0)x − x0x1x2

• If f(x) has one double root and one simple root, then x0 = x1 6= x2 and thus

f(x) can be written as

x3 − (2x1 + x2)x
2 + (x2

1 + 2x1x2)x − x2
1x2

The pejorative manifold of a cubic polynomial that has a double root is the sur-

face defined by
(

−(2x1 + x2) (x2
1 + 2x1x2) −x2

1x2

)

x1 6= x2
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• If f(x) has a triple root, then x0 = x1 = x2, and thus f(x) can be written as

x3 − 3x0x
2 + 3x2

0x − x3
0

The pejorative manifold of a cubic polynomial that has a triple root is the curve

defined by
(

−3x0 3x2
0 −x3

0

)

�
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Theorem 4.1 The condition number of the real root x0 of multiplicity r of the poly-

nomial f(x) = (x − x0)
r , such that the perturbed polynomial also has a root of

multiplicity r, is

ρ(x0) :=
∆x0

∆f
=

1

r |x0|
‖(x − x0)

r‖
‖(x − x0)r−1‖ =

1

r |x0|

(

∑r

i=0

(

r
i

)2
(x0)

2i

∑r−1
i=0

(

r−1
i

)2
(x0)2i

)

1

2

where

∆f =
‖δf‖
‖f‖ and ∆x0 =

|δx0|
|x0|
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Example 4.3 The condition number ρ(1) of the root x0 = 1 of (x − 1)r is

ρ(1) =
1

r

(

∑r
i=0

(

r
i

)2

∑r−1
i=0

(

r−1
i

)2

)

1

2

This expression reduces to

ρ(1) =
1

r

√

√

√

√

(

2r
r

)

(

2(r−1)
r−1

)
=

1

r

√

2(2r − 1)

r
≈ 2

r
for large r

Compare with the componentwise and normwise condition numbers

κc(1) ≈
1

εc

and κn(1) ≈ 1

εn

• ρ(1) is independent of the the noise level (assumed to be small)

• ρ(1) decreases as the multiplicity r of the root x0 = 1 increases �
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5. A SIMPLE POLYNOMIAL ROOT FINDER

Guass developed a polynomial root finder that is fundamentally different to the root

finders mentioned earlier:

Let w1(x) be the product of all linear factors of f(x)

Let w2(x) be the product of all quadratic factors of f(x)

· · ·

Let wi(x) be the product of all factors of degree i of f(x)

Thus f(x) can be written as

f(x) = w1(x)w2
2(x)w3

3(x) · · ·wrmax

rmax
(x)
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Perform a sequence of GCD computations

q1(x) = GCD
(

f(x), f (1)(x)
)

= w2(x)w2
3(x)w3

4(x) · · ·wrmax−1
rmax

(x)

q2(x) = GCD
(

q1(x), q
(1)
1 (x)

)

= w3(x)w2
4(x)w3

5(x) · · ·wrmax−2
rmax

(x)

q3(x) = GCD
(

q2(x), q
(1)
2 (x)

)

= w4(x)w2
5(x)w3

6(x) · · ·wrmax−3
rmax

(x)

q4(x) = GCD
(

q3(x), q
(1)
3 (x)

)

= w5(x)w2
6(x) · · ·wrmax−4

rmax
(x)

...

The sequence terminates at qrmax
(x), which is a constant.
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A set of polynomials hi(x), i = 1, . . . , rmax, is defined such that

h1(x) = f(x)
q1(x) = w1(x)w2(x)w3(x) · · ·

h2(x) = q1(x)
q2(x) = w2(x)w3(x) · · ·

h3(x) = q2(x)
q3(x) = w3(x) · · ·

...

hrmax
(x) =

qrmax−2

qrmax−1

= wrmax
(x)

The functions, w1(x), w2(x), · · · , wrmax
(x), are determined from

w1(x) =
h1(x)

h2(x)
, w2(x) =

h2(x)

h3(x)
, · · · , wrmax−1(x) =

hrmax−1(x)

hrmax
(x)

until

wrmax
(x) = hrmax

(x)
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The equations

w1(x) = 0, w2(x) = 0, · · · , wrmax
(x) = 0

contain only simple roots, and they yield the simple, double, triple, etc., roots of

f(x).

• If x0 is a root of wi(x), then it is a root of multiplicity i of f(x).

54



'

&

$

%

Example 5.1 Calculate the roots of the polynomial

f(x) = x6 − 3x5 + 6x3 − 3x2 − 3x + 2

whose derivative is

f (1)(x) = 6x5 − 15x4 + 18x2 − 6x − 3

Perform a sequence of GCD computations:

q1(x) = GCD
(

f(x), f (1)(x)
)

= x3 − x2 − x + 1

q2(x) = GCD
(

q1(x), q
(1)
1 (x)

)

= x − 1

q3(x) = GCD
(

q2(x), q
(1)
2 (x)

)

= 1

The maximum degree of a divisor of f(x) is 3 because the sequence terminates at

q3(x).
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The polynomials hi(x) are:

h1(x) = f(x)
q1(x) = x3 − 2x2 − x + 2

h2(x) = q1(x)
q2(x) = x2 − 1

h3(x) = q2(x)
q3(x) = x − 1

The polynomials wi(x) are

w1(x) = h1(x)
h2(x) = x − 2

w2(x) = h2(x)
h3(x) = x + 1

w3(x) = h3(x) = x − 1

and thus the factors of f(x) are

f(x) = (x − 2)(x + 1)2(x − 1)3

�
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5.1 Discussion of the method

• The computation of the GCD of two polynomials is an ill-posed problem because

it is not a continuous function of their coefficients:

– The polynomials f(x) and g(x) may have a non-constant GCD, but the per-

turbed polynomialsf(x) + δf(x) and g(x) + δg(x) may be coprime.

• The determination of the degree of the GCD of two polynomials reduces to the

determination of the rank of a resultant matrix, but the rank of a matrix is not

defined in a floating point environment. The determination of the rank of a noisy

matrix is a challenging problem that arises in many applications.

• Polynomial division, which reduces to the deconvolution of the coefficients of the

polynomials, is an ill-conditioned problem that must be implemented with care in

order to obtain a computationally reliable solution.
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• The data in many practical examples is inexact, and thus the polynomials are only

specified within a tolerance. The given inexact polynomials may be coprime, and

it may therefore be necessary to perturb each polynomial slightly, such that they

have a non-constant GCD. This GCD is called an approximate greatest common

divisor of the given inexact polynomials, and it is necessary to compute the small-

est perturbations such that the perturbed polynomials have a non-constant exact

GCD.

• The amplitude of the noise may or may not be known in practical examples, and

it may only be known approximately. It is desirable that a polynomial root finder

not require an estimate of the noise level, and that all parameters and thresholds

be calculated from the polynomial coefficients.
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6. SUMMARY

• Multiple roots break up into a cluster of simple roots when they are computed by

conventional algorithms. They cannot, in general, be grouped by clustering.

• A multiple root is ill-conditioned with respect to random (unstructured) pertur-

bations, but it is well-conditioned with respect to (structured) perturbations that

preserve its multiplicity.

• A multiple root is ill-conditioned if the perturbations move it off its pejorative mani-

fold, but it is well-conditioned if the perturbations keep it on its pejorative manifold.

• The backward error of an approximate root is measured in the data space and

the forward error is measured in the solution space.

• The condition number of a simple root is the ratio of its forward error to its back-

ward error.
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