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Local uniqueness
Remarks
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The generalized functional of

potential energy



Solution to A m

Theorem Let (3}’0, ’yo), (ﬁljn_|_1, yn); lz > O’ 1 = ]_’ ...+ 1 Sat|sfy (C), Tacoma bridge

Introduction - model 1

(D). Then there exist the smooth functions Introduction - references 1

Introduction - model 2

Introduction - references 2
Suspension bridge - steady

(:D . K — Rn, \Ij . K — Rn state problem

Two different models
Deformation energy of the

which are bounded and ¥ = (¥, ... ¥,,) satisfies the inequality Le;}:iiﬂinandcablestays

Outer forces
The functional of potential

o < \PZ(b) < LBn_|_1,’l,=1,...n. energy
Variational equation 1
Variational equation 2
fa = (a1,...an) € R™ fulfill a; > 0,i=1,...n, then
Auxiliary problem 1
Auxiliary problem 2

a9 U

ap = @ % . an y — \I] —_ ... Another auxiliary problem
ai , Apn—1 , al ’ an—1 Some useful functions
Solution to P
. . Local properties of solution
are the unique solution to A for a. Local uniqueness
Remarks

Generalized model - torsion
The generalized functional of
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bV (u, ’U) - 2 E k‘z (er - pz - U(ZZ))—I_U(ZZ) = LF ('U) Introduction - references 1
— Introduction - model 2

Introduction - references 2
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Two different models
Deformation energy of the
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Main cable and cable stays

Outer forces
The functional of potential

energy
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Solution to A

Some useful functions
Solution to P
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Local uniqueness
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Another auxiliary problem U@N

n Tacoma bridge
Introduction - model 1

bV (u, ’U) - 2 E k‘z (er - pz - U(ZZ))—l_U(ZZ) = LF (’U) Introduction - references 1
— Introduction - model 2

Introduction - references 2
Suspension bridge - steady
state problem

Two different models
Deformation energy of the

k o - 1 centre span
Lemma Let the sequence y;’ convergetoy;,i=1,...nif £ — oo. bl et
Let '* € L?(0, L) converge to F° € L?(0, L) if k — oco. Let u* be e s et
the solutions to equation above corresponding to y¥, F*, then «* Varatonal equation 1
5 5 5 c ariational equation
converges in Wy to u’ € Wy if K — oo and «" is the solution to the Vatatone cqtion
. . 0 0 Auxiliary problem 1
equation above corresponding to y,, ™. Auxilary problem 2
Solution to A

Another auxiliary problem

Some useful functions
Solution to P

Local properties of solution
Local uniqueness
Remarks
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Some useful functions

Define the functions: Tacoma bridge

1 Introduction - model 1
- M n— e
(—) : — R , Whe re Introduction - references 1
Introduction - model 2
Introduction - references 2

@(CL) = (('—)1(61,)7 . @n_l(a))7 Suspension bridge - steady

state problem
Two different models

(—)(a) — Z =1 n—1 Deformation energy of the
1 - 9 e TS o

centre span
Main cable and cable stays

Outer forces
The functional of potential

energy
Variational equation 1
Variational equation 2
Variational equation 3
Auxiliary problem 1
Auxiliary problem 2
Solution to A

Another auxiliary problem
Solution to 7P

Local properties of solution
Local uniqueness
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Some useful functions

Define the functions: T
Introduction - model 1
(—) : M — Rn_l’ Where Introduction - references 1

Introduction - model 2
Introduction - references 2

@(CL) = ((")1(@)7 . @n_l(a))7 Suspension bridge - steady

state problem
Two different models

. Deformation energy of the
Oi(a) = ,i=1...n—1. ”

centre span
Main cable and cable stays
Outer forces

Kt R’n X L2 (O, L) — M The functional of potential

energy
Variational equation 1

_ Variational equation 2
K’(y7 F) _ (K’l (y7 F)’ - R (y7 F))7 Variational equation 3
+ Auxiliary problem 1
. — . . . . _ . Auxili blem 2
Ki (y7 F) - kz (yz Di 'U/(Zq,)) FZ Szﬁtl;r:tzrlem
Another auxiliary problem

where w is the solution to the variational equation above for y, F. e

Solution to PP
Local properties of solution

Local uniqueness
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Some useful functions U@N

Define the functions: T
Introduction - model 1
(—) : M — Rn_l’ Where Introduction - references 1

Introduction - model 2
Introduction - references 2

@(CL) — (("')1(61,)7 .. @n_l(a))7 Suspension bridge - steady

state problem
Two different models

. Deformation energy of the
Oi(a) = ,i=1...n—1. ”

centre span
Main cable and cable stays
Outer forces

Kt R’n X L2 (O, L) — M The functional of potential

energy
Variational equation 1

_ Variational equation 2
K’(y7 F) _ (K’l (y7 F)’ - R (y7 F))’ Variational equation 3
Auxiliary problem 1

K (y7 F) — k?, (yz — pi — 'U/(Zq,))—i_ _ FZ Auxiliary problem 2

Solution to A
Another auxiliary problem

where w is the solution to the variational equation above for y, F. e

Solution to P

R . Rn X L2 (O, L) N Rn Local properties of solution

Local uniqueness

Remarks
Generalized model - torsion

R(y, F) = \Ij O @ O K}(y, F) The generalized functional of

potential energy



Solutionto P I

Theorem Let (zo,%0), (Tpni1,Yni1), liyi=1...n+1
satisfy the assumptions (C), (D) and F' € L?(0, L).
Then there exist solutions to P.
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Introduction - model 2
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Suspension bridge - steady
state problem

Two different models
Deformation energy of the

centre span
Main cable and cable stays

Outer forces
The functional of potential

energy
Variational equation 1
Variational equation 2
Variational equation 3
Auxiliary problem 1
Auxiliary problem 2
Solution to A

Another auxiliary problem
Some useful functions

Solution to P

Local properties of solution

Local uniqueness
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Local properties of solution

Let z, y, u from N, R™, Wy be a solution to P, then we say that the R TR

Introduction - model 1
solution satisfies the condition (E) if the inequalities Introduction - references 1

Introduction - model 2

Introduction - references 2

. Suspension bridge - steady
Yi; — Pi — u(zz) > 07 1 = 1,. .. N state problem
Two different models
Deformation energy of the

h 0 I d . centre span
Main cable and cable stays

Outer forces
The functional of potential

energy
Variational equation 1
Variational equation 2
Variational equation 3
Auxiliary problem 1
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Solution to A
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Some useful functions
Solution to 7P

Local uniqueness
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Local properties of solution U@N

Let z, y, u from N, R™, Wy be a solution to P, then we say that the Tacoma bridge

Introduction - model 1
solution satisfies the condition (E) if the inequalities Introduction - references 1

Introduction - model 2

Introduction - references 2

. Suspension bridge - steady
Yi; — Pi — ’U/(Zz) > 07 1 = 1,. .. N state problem
Two different models
Deformation energy of the

h 0 I d centre span

Main cable and cable stays

Outer forces
The functional of potential

energy

Let us define the function S : R™ x L*(0, L) — R™*"™ in the following  varito cquation 1

Variational equation 2

Way Variational equation 3
a Auxiliary problem 1
Auxiliary problem 2
S(y7 F) — a_\:[j © @ > K’(y7 F) Y Solutioth?J.A
y Another auxiliary problem
where the functions ¥, © are defined above and the values of S are  wmar

.
matrices n x n. Local uniqueness

Remarks
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The generalized functional of

potential energy



Local uniqueness U@N

Theorem Let z, ¢, w from N, R"™, Wy is a solution to the problem P GRS
- Introduction - model 1
corresponding to F' € L*(0, L). Let the solution satisfy the condition isoduclon - eferences
~ ntroduction - mode
(E) and the matrix S(y, F') not have the eigenvalue equal to one. ioduction. references 2

Then there exist «, 8, > 0 and the functions &1 : B — N, & B — R™,  Lreer

Two different models
Deformation energy of the

53 - B — LL V, Where centre span
Main cable and cable stays
Outer forces

B = {F c L2(O,L) ’ H F — ﬁ‘l HLQ(Q,L) < Oé} ) The functional of potential

energy
Variational equation 1
Variational equation 2

The functions are continuously differentiable on B and satisfy the Variafional equation 3

Auxiliary problem 1

I’e I a.t| O nS Auxiliary problem 2

= Solution to A

gl(ﬁ) = 53, 52(F) — g, 53(F) — '&/, Another auxiliary problem

Some useful functions
Solution to P

together Wlth the Inequalltles Local properties of solution

Remarks

| .{i‘ - gl(ﬁ) |Rn < /8, | :g - 52(ﬁ1) |Rn < /8, H ’E[, — gg(ﬁ) HWV < /8 Generalized model - torsion

The generalized functional of
potential energy

on the set B. Moreover, & (F'), &(F), £3(F') is a solution to P for
any F' € B, where F' corresponds to Lr(.), and the solution is
unique if the inequalities above are satisfied.



Remarks

Remark 1. The matrix S(y, F') can be expressed explicitly and the
Newton method can be applied for looking for a solution to P

satisfying the condition (E).
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Another auxiliary problem
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Solution to PP
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Local uniqueness
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Remarks

Remark 1. The matrix S(y, F') can be expressed explicitly and the
Newton method can be applied for looking for a solution to P
satisfying the condition (E).

Remark 2. The stability can be disturbed if one is among eigenvalues
of S or S'is near to the state, which can be expressed by the number

| x — Sz |c

inf

xeR™ ’

| @ e

where | z |. is the norm on R"given by the formula

|z fe=

n

2
E fo
i=1
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The generalized functional of potential energy U@N

The solution to the generalized problem is a minimum of Tacoma bridge

Introduction - model 1
Introduction - references 1

1 1 2 2 .
K(x Y T LY ,U, 90) = Introduction - model 2

Introduction - references 2

Suspension bridge - steady
1 2 state problem
_bV (u7 u) + —bT(SO, SO) + ¢(y y U + lSO) + ¢(y s U — lSO)_ Two different models
2 2 Deformation energy of the
centre span

LF (U) — LG (U) — Lc (yl) — Lc (y2) ; Main cable and cable stays

Outer forces
The functional of potential

defined on a subset of R™ x R"™ x R™ x R™ x Wy x W, where z*, Vanatonal equaton 1

5 anC Variational equation 2
yl and :,EQ y y2 SatISfy the Cond |t|0nS (A) . Variational equation 3
Auxiliary problem 1
Auxiliary problem 2
Solution to A
Another auxiliary problem
Some useful functions
Solution to PP
Local properties of solution
Local uniqueness
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The generalized functional of potential energy

The solution to the generalized problem is a minimum of

K(zy' 2 y° u,p) =
1 1
2 2
Lr(u) — Lo(u) — Le(y') — Le(y®)

defined on a subset of R™ x R"™ x R™ x R™ x Wy x W, where z*,

y' and z?, y? satisfy the conditions (A).

L
br(p, ) = | Kro'y'dz,
/

—bV(’LL, ’LL) T _bT(907 Qp) + ¢(y17u -+ lg[)) T ¢(y27u — lQO)—
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The generalized functional of potential energy

The solution to the generalized problem is a minimum of

K(zy' 2 y° u,p) =
1 1
2 2
Lr(u) — Lo(u) — Le(y') — Le(y®)

defined on a subset of R™ x R"™ x R™ x R™ x Wy x W, where z*,

y' and z?, y? satisfy the conditions (A).

L
br(p, ) = | Kro'y'dz,
/

Wr = {o € H'(0,L) | p(0) = ¢(L) = 0},

—bV(’LL, ’LL) T _bT(907 Qp) + ¢(y17u -+ lg[)) T ¢(y27u — lQO)—
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The generalized functional of potential energy

The solution to the generalized problem is a minimum of

K(zy' 2 y° u,p) =
1 1
2 2
Lr(u) — Lo(u) — Le(y') — Le(y®)

defined on a subset of R™ x R"™ x R™ x R™ x Wy x W, where z*,

y' and z?, y? satisfy the conditions (A).

L
br(p, ) = | Kro'y'dz,
/

Wr = {o € H'(0,L) | p(0) = ¢(L) = 0},

L,
La(p) = /Ggpdy, G e L?(0,L).
0

—bV(’LL, ’LL) T _bT(907 Qp) + ¢(y17u -+ lg[)) T ¢(y27u — lQO)—
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