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Introduction - model 1
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Differential equation

m
∂2u(x, t)

∂t2
+EI

∂4u(x, t)

∂x4
+b

∂u(x, t)

∂t
= −ku+(x, t)+W (x)+f(x, t)

Boundary conditions

u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = 0,

u(x, t+ 2π) = u(x, t), −∞ < t <∞, x ∈ (0, L)
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Introduction - model 2
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Differential equation and boundary conditions

m1
∂2v.

∂t2
+ T

∂2v

∂x2
+ b1

∂v

∂t
= k(u− v)+ +W1 + f1(x, t),

m2
∂2u

∂t2
+ EI

∂4u

∂x4
+ b2

∂u

∂t
= −k(u− v)+ +W2 + f2(x, t),

u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = v(0, t) = v(l, t) = 0,

u(x, t+ 2π) = u(x, t), v(x, t+ 2π) = v(x, t), −∞ < t <∞, x ∈ (0, L)



Tacoma bridge

Introduction - model 1

Introduction - references 1

Introduction - model 2

Introduction - references 2
Suspension bridge - steady

state problem

Two different models
Deformation energy of the

centre span

Main cable and cable stays

Outer forces
The functional of potential

energy

Variational equation 1

Variational equation 2

Variational equation 3

Auxiliary problem 1

Auxiliary problem 2

Solution to A

Another auxiliary problem

Some useful functions

Solution to P

Local properties of solution

Local uniqueness

Remarks

Generalized model - torsion
The generalized functional of

potential energy

SNA 2005 February 7, 2005 - p. 5

Introduction - model 2

� ��� � � �

� ��� � � �

� 	�
 � �� 
 �
 � �
 � 
 � � 
 � ���  � � � � � � � � � � � � � �

Differential equation and boundary conditions

m1
∂2v.

∂t2
+ T

∂2v

∂x2
+ b1

∂v

∂t
= k(u− v)+ +W1 + f1(x, t),

m2
∂2u

∂t2
+ EI

∂4u

∂x4
+ b2

∂u

∂t
= −k(u− v)+ +W2 + f2(x, t),

u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = v(0, t) = v(l, t) = 0,

u(x, t+ 2π) = u(x, t), v(x, t+ 2π) = v(x, t), −∞ < t <∞, x ∈ (0, L)



Tacoma bridge

Introduction - model 1

Introduction - references 1

Introduction - model 2

Introduction - references 2
Suspension bridge - steady

state problem

Two different models
Deformation energy of the

centre span

Main cable and cable stays

Outer forces
The functional of potential

energy

Variational equation 1

Variational equation 2

Variational equation 3

Auxiliary problem 1

Auxiliary problem 2

Solution to A

Another auxiliary problem

Some useful functions

Solution to P

Local properties of solution

Local uniqueness

Remarks

Generalized model - torsion
The generalized functional of

potential energy

SNA 2005 February 7, 2005 - p. 6

Introduction - references 2

J. BERKOVITS, P. DRÁBEK, H. LEINFELDER, V. MUSTONEN, G. TAJČOVÁ,
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Suspension bridge - steady state problem

main cable

cable stay

side cable

centre spanside span

tower

Assumptions:

The main cable is perfectly flexible and inextensible.

The behaviour of the cable stays is nonlinear: they resist tension
and do not resist compression.
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Two different models

The road bed is divided into three separate parts – centre span and
two side spans

z1 zi zn

(x0, y0)

(x1, y1)

(xi, yi)

(xn, yn)

(xn+1, yn+1)

ln+1l1

li

pn

pi

p1

L

The road bed is undivided

(x0, y0) (xn+1, yn+1)

LL1 L2
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Deformation energy of the centre span

The basic bilinear form

bV (u, v) =

L
Z

0

KV u
′′v′′dz.

KV (z) > ε > 0, z ∈ (0, L).

The bilinear form bV (., .) is defined on the space

WV = {u ∈ H2(0, L) | u(0) = u(L) = 0}.

The deformation energy of the centre span connected with u and
supported at the ends is

1

2
bV (u, u).
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Main cable and cable stays

The main cable is a polygon with the points (xi, yi), i = 1, . . . n+ 1.

(x0, y0), (xn+1, yn+1) are fixed.
x = (x1, . . . xn), y = (y1, . . . yn).

(A) fi(x, y) = (xi − xi−1)
2 + (yi − yi−1)

2 = l2i , i = 1, . . . n+ 1,

where li, i = 1, . . . n+ 1 are the given positive numbers.

The deformation energy of the cable stays φ(y, u) is

φ(y, u) =
1

2

n
X

i=1

ki

˘

(yi − di − u(zi))
+¯2

,

where x+ = max{0, x}.
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Outer forces

The gravitation forces acting on the centre span F ∈ L2(0, L).

LF (u) =

L
Z

0

Fudz

The forces acting on the main cable.

Fi = −ρig, i = 1, . . . n,

ρi = ρc(li + li+1)/2 + ρsdi, i = 1, . . . n,

The forces Fi, i = 1, . . . n define the linear form

Lc(y) =

n
X

i=1

Fiyi.
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The functional of potential energy

The solution to the problem is a minimum of

J(x, y, u) =
1

2
bV (u, u) + 2Φ(y, u) − LF (u) − 2Lc(y)

defined on Rn × Rn × WV , where x, y ∈ Rn satisfy
the restrictions (A).
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Variational equation 1

Denote

gradxfi =

„

∂fi

∂x1
, . . .

∂fi

∂xn

«

,

gradyfi =

„

∂fi

∂y1
, . . .

∂fi

∂yn

«

, i = 1 . . . n+ 1.

We say that ỹ fulfills the relation (A) in differential sense if there
exists x̃ ∈ Rn such that the equations

(gradxfi(x, y), x̃) + (gradyfi(x, y), ỹ) = 0, i = 1, . . . n+ 1

hold.

If x, y, u is a minimum of the functional J(., ., .) and x, y satisfy (A),

then y satisfies the variational equation

n
X

i=1

`

ki(yi − pi − u(zi))
+ − Fi

´

ỹi = 0,

where ỹ satisfies (A) in differential sense.
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Variational equation 1

Denote

gradxfi =

„

∂fi

∂x1
, . . .

∂fi

∂xn

«

,

gradyfi =

„

∂fi

∂y1
, . . .

∂fi

∂yn

«

, i = 1 . . . n+ 1.

We say that ỹ fulfills the relation (A) in differential sense if there
exists x̃ ∈ Rn such that the equations

(gradxfi(x, y), x̃) + (gradyfi(x, y), ỹ) = 0, i = 1, . . . n+ 1

hold.

If x, y, u is a minimum of the functional J(., ., .) and x, y satisfy (A),

then y satisfies the variational equation

n
X

i=1

`

ki(yi − pi − u(zi))
+ − Fi

´

ỹi = 0,

where ỹ satisfies (A) in differential sense.
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Variational equation 2

The function u ∈ WV satisfies the variational equality

bV (u, v) − 2

n
X

i=1

ki(yi − pi − u(zi))
+v(zi) = LF (v)

for all v ∈WV .

Denote

si =
yi − yi−1

xi − xi−1
, i = 1, . . . n+ 1.

Consider that x, y ∈ Rn, which solves variational equation above,

satisfy the relations

(B) xi−1 < xi, si < si+1, i = 1, . . . n+ 1.
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Variational equation 3

(xi, yi)

(xi+1, yi+1)

(xi+2, yi+2)

(xi+3, yi+3)

li+1

li+2

li+3

ϕi

ϕi+1

ϕi+2

Let (x0, y0), (xn+1, yn+1), li > 0, Fj > 0, i = 1 . . . n+ 1, j = 1 . . . n,

F ∈ L2(0, L) be given, then x, y, u from Rn, Rn, WV are a solution
to the problem P if they satisfy the variational equalities above and

x, y fulfill the relations (A), (B).
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Auxiliary problem 1

Let a = (a1, . . . an) ∈ Rn satisfy

ai > 0, i = 1 . . . n ,

x, y ∈ R satisfy the conditions (A), (B). Then x, y is a solution to the

auxiliary problem A, if the equation

n
X

i=1

aiỹ1 = 0

holds for all ỹ = (ȳ1, . . . ỹn) fulfilling the restrictions (A) at x, y in

differential sense.

Lemma Let (x0, y0), (xn+1, yn+1), li, i = 1, . . . n+ 1, a ∈ Rn be

given. Then x, y ∈ Rn satisfying (A), (B) are a solution to A if and
only if the equations

aj+1

aj

=
sj+2 − sj+1

sj+1 − sj

, j = 1, . . . , n− 1

hold.
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Auxiliary problem 2

Let (x0, y0), (xn+1, yn+1), li > 0, i = 1 . . . n+ 1 be given, we stay

that the parameters satisfy the assumption (C) if the inequalities

xn+1 − x0 > li, i = 1, . . . n+ 1

hold.

We say that the parameters (x0, y0), (xn+1, yn+1), li > 0,

i = 1 . . . n+ 1 satisfy the assumption (D) if there exist
x = (x1, . . . xn), y = (y1, . . . yn) which satisfy (A), (B).
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Solution to A

Theorem Let (x0, y0), (xn+1, yn), li > 0, i = 1, . . . n+ 1 satisfy (C),

(D). Then there exist the smooth functions

Φ : K → Rn, Ψ : K → Rn

which are bounded and Ψ = (Ψ1, . . .Ψn) satisfies the inequality

x0 < Ψi(b) < xn+1, i = 1, . . . n .

If a = (a1, . . . an) ∈ Rn fulfill ai > 0, i = 1, . . . n, then

x = Φ

„

a2

a1
, . . .

an

an−1

«

, y = Ψ

„

a2

a1
, . . .

an

an−1

«

are the unique solution to A for a.



Tacoma bridge

Introduction - model 1

Introduction - references 1

Introduction - model 2

Introduction - references 2
Suspension bridge - steady

state problem

Two different models
Deformation energy of the

centre span

Main cable and cable stays

Outer forces
The functional of potential

energy

Variational equation 1

Variational equation 2

Variational equation 3

Auxiliary problem 1

Auxiliary problem 2

Solution to A

Another auxiliary problem

Some useful functions

Solution to P

Local properties of solution

Local uniqueness

Remarks

Generalized model - torsion
The generalized functional of

potential energy

SNA 2005 February 7, 2005 - p. 19

Another auxiliary problem

bV (u, v) − 2
n

X

i=1

ki(yi − pi − u(zi))
+v(zi) = LF (v).

Lemma Let the sequence yk
i converge to y0

i , i = 1, . . . n if k → ∞.

Let F k ∈ L2(0, L) converge to F 0 ∈ L2(0, L) if k → ∞. Let uk be
the solutions to equation above corresponding to yk

i , F k, then uk

converges in WV to u0 ∈ WV if k → ∞ and u0 is the solution to the
equation above corresponding to y0

i , F 0.
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Some useful functions

Define the functions:

Θ : M → Rn−1, where

Θ(a) = (Θ1(a), . . .Θn−1(a)),

Θi(a) =
ai+1

ai

, i = 1 . . . n− 1.

κ : Rn × L2(0, L) →M

κ(y, F ) = (κ1(y, F ), . . . κn(y, F )),

κi(y, F ) = ki(yi − pi − u(zi))
+ − Fi,

where u is the solution to the variational equation above for y, F .

R : Rn × L2(0, L) → Rn

R(y, F ) = Ψ ◦ Θ ◦ κ(y, F ).
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Solution to P

Theorem Let (x0, y0), (xn+1, yn+1), li, i = 1 . . . n + 1
satisfy the assumptions (C), (D) and F ∈ L2(0, L).
Then there exist solutions to P.
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Local properties of solution

Let x, y, u from N , Rn, WV be a solution to P , then we say that the

solution satisfies the condition (E) if the inequalities

yi − pi − u(zi) > 0, i = 1, . . . n

hold.

Let us define the function S : Rn ×L2(0, L) → Rn×n in the following
way:

S(y, F ) =
∂

∂y
Ψ ◦ Θ ◦ κ(y, F ) ,

where the functions Ψ, Θ are defined above and the values of S are

matrices n× n.
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Local uniqueness

Theorem Let x̃, ỹ, ũ from N , Rn, WV is a solution to the problem P

corresponding to F̃ ∈ L2(0, L). Let the solution satisfy the condition
(E) and the matrix S(ỹ, F̃ ) not have the eigenvalue equal to one.

Then there exist α, β,> 0 and the functions ξ1 : B → N , ξ2B → Rn,
ξ3 : B → WV , where

B = {F ∈ L2(0, L) | ‖ F − F̃ ‖L2(α,L)< α} .

The functions are continuously differentiable on B and satisfy the
relations

ξ1(F̃ ) = x̃, ξ2(F̃ ) = ỹ, ξ3(F̃ ) = ũ,

together with the inequalities

| x̃− ξ1(F̃ ) |Rn < β, | ỹ − ξ2(F̃ ) |Rn < β, ‖ ũ − ξ3(F̃ ) ‖WV
< β

on the set B. Moreover, ξ1(F ), ξ2(F ), ξ3(F ) is a solution to P for

any F ∈ B, where F corresponds to LF (.), and the solution is
unique if the inequalities above are satisfied.
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Remarks

Remark 1. The matrix S(y, F ) can be expressed explicitly and the

Newton method can be applied for looking for a solution to P

satisfying the condition (E).

Remark 2. The stability can be disturbed if one is among eigenvalues
of S or S is near to the state, which can be expressed by the number

inf
x∈Rn

| x− Sx |c
| x |c

,

where | x |c is the norm on Rngiven by the formula

| x |c =

v

u

u

t

n
X

i=1

kix2
i .
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The generalized functional of potential energy

The solution to the generalized problem is a minimum of

K(x1, y1,x2, y2, u, ϕ) =

1

2
bV (u, u) +

1

2
bT (ϕ, ϕ) + φ(y1, u+ lϕ) + φ(y2, u− lϕ)−

LF (u) − LG(u) − Lc(y
1) − Lc(y

2) ,

defined on a subset of Rn ×Rn ×Rn ×Rn ×WV ×WT , where x1,

y1 and x2, y2 satisfy the conditions (A).

bT (ϕ,ψ) =

L
Z

0

KTϕ
′ψ′dz,

WT =
˘

ϕ ∈ H1(0, L) | ϕ(0) = ϕ(L) = 0
¯

,

LG(ϕ) =

L
Z

0

Gϕdy , G ∈ L2(0, L).
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