On homogenization of a quasilinear elliptic equation connected with heat conduction

Josef Malík
Division of Applied Mathematics
Institute of Geonics

Ostrava
malik@ugn.cas.cz

Electrical transformer

Electrical transformer

Introduction - model
Introduction - references
Weak formulation
1D homogenization - setting up 1D homogenization - auxiliary
lemma
1D homogenization - main theorem
Some auxiliary results
Auxiliary theorem
Linear homogenization 1
Linear homogenization 2
Linear homogenization 3
Homogenization - setting up
Homogenization - main theorem Homogenization - laminated
material
Coefficients obtained
experimentally

Introduction - model

Differential equation

$$
-\frac{\partial}{\partial x_{i}}\left(a_{i j}(x, u) \frac{\partial u}{\partial x_{j}}\right)=f(x) \quad \text { in } \Omega
$$

Electrical transformer

Introduction - model introduction - references
Weak formulation
1D homogenization - setting up
1D homogenization - auxiliary
lemma
1D homogenization - main
theorem
Some auxiliary results
Auxiliary theorem
Linear homogenization 1
Linear homogenization 2
Linear homogenization 3
Homogenization - setting up
Homogenization - main theorem Homogenization - laminated
material
Coefficients obtained
experimentally

Introduction - model

Differential equation

$$
-\frac{\partial}{\partial x_{i}}\left(a_{i j}(x, u) \frac{\partial u}{\partial x_{j}}\right)=f(x) \quad \text { in } \Omega
$$

Boundary conditions

$$
u(x)=0 \quad \text { on } \partial \Omega
$$

Electrical transformer

Introduction - model
introduction - references
Weak formulation
1D homogenization - setting up
1D homogenization - auxiliary
lemma
1D homogenization - main theorem

Some auxiliary results
Auxiliary theorem
Linear homogenization 1
Linear homogenization 2
Linear homogenization 3
Homogenization - setting up Homogenization - main theorem Homogenization - laminated
material
Coefficients obtained
experimentally

Introduction - model

Differential equation

$$
-\frac{\partial}{\partial x_{i}}\left(a_{i j}(x, u) \frac{\partial u}{\partial x_{j}}\right)=f(x) \quad \text { in } \Omega
$$

Boundary conditions

$$
u(x)=0 \quad \text { on } \partial \Omega
$$

Iterative method

$$
-\frac{\partial}{\partial x_{i}}\left(a_{i j}\left(x, u_{n}\right) \frac{\partial u_{n+1}}{\partial x_{j}}\right)=f(x)
$$

Electrical transformer

Introduction - model
Introduction - references
Weak formulation
1D homogenization - setting up 1D homogenization - auxiliary lemma
1D homogenization - main theorem

Some auxiliary results
Auxiliary theorem
Linear homogenization 1
Linear homogenization 2
Linear homogenization 3
Homogenization - setting up Homogenization - main theorem Homogenization - laminated material
Coefficients obtained
experimentally

Introduction - references

I. Hlaváček, M. KŘížek, and J. Malý, On Galerkin approximations of a quasilinear elliptic problem of a nonmonotone type, J. Math. Anal. Appl., 184 (1994), pp. 168-189.

Electrical transformer
Introduction - model
Introduction - references
Weak formulation
1D homogenization - setting up
1D homogenization - auxiliary lemma
1D homogenization - main
theorem
Some auxiliary results
Auxiliary theorem
Linear homogenization 1
Linear homogenization 2
Linear homogenization 3
Homogenization - setting up
Homogenization - main theorem Homogenization - laminated
material
Coefficients obtained
experimentally

Introduction - references

I. Hlaváček, M. Ǩ̌ížek, and J. Malý, On Galerkin approximations of a quasilinear elliptic problem of a nonmonotone type, J. Math. Anal. Appl., 184 (1994), pp. 168-189.
I. Hlaváček, Reliable solution of quasilinear nonpotential elliptic problem of a nonmonotone type with respect to the uncertainty in coefficients, J. Math. Anal. Appl., 212 (1997), pp. 452-466.

Electrical transformer
Introduction - model

Introduction - references

Weak formulation
1D homogenization - setting up
1D homogenization - auxiliary lemma
1D homogenization - main
theorem
Some auxiliary results
Auxiliary theorem
Linear homogenization 1
Linear homogenization 2
Linear homogenization 3
Homogenization - setting up
Homogenization - main theorem Homogenization - laminated
material
Coefficients obtained
experimentally

Introduction - references

I. HLAVÁČek, M. KŘížek, and J. Malý, On Galerkin approximations of a quasilinear elliptic problem of a nonmonotone type, J. Math. Anal. Appl., 184 (1994), pp. 168-189.
I. Hlaváček, Reliable solution of quasilinear nonpotential elliptic problem of a nonmonotone type with respect to the uncertainty in coefficients, J. Math. Anal. Appl., 212 (1997), pp. 452-466.
L. Liu, M. KŔíżek, and P. Neittaanmäki, Higher order finite element approximation of a quasilinear elliptic boundary value problem of a non-monotone type, Applications of Mathematics, 41 (1996) pp. 467-478.

Weak formulation

Coeffi cients

$$
\begin{gathered}
a_{i j}(x, u)=a_{j i}(x, u), \quad i, j=1, \ldots n \\
\nu \eta_{i} \eta_{i} \leq a_{i j}(x, u) \eta_{i} \eta_{j} \\
\left|a_{i j}\left(x, u_{1}\right)-a_{i j}\left(x, u_{2}\right)\right| \leq C_{L}\left|u_{1}-u_{2}\right|, \quad i, j=1, \ldots n
\end{gathered}
$$

Electrical transformer Introduction - model Introduction - references
Weak formulation
1D homogenization - setting up 1D homogenization - auxiliary lemma
1D homogenization - main theorem

Some auxiliary results
Auxiliary theorem
Linear homogenization 1
Linear homogenization 2
Linear homogenization 3
Homogenization - setting up
Homogenization - main theorem Homogenization - laminated
material
Coefficients obtained
experimentally

Weak formulation

Coeffi cients

$$
\begin{gathered}
a_{i j}(x, u)=a_{j i}(x, u), \quad i, j=1, \ldots n \\
\nu \eta_{i} \eta_{i} \leq a_{i j}(x, u) \eta_{i} \eta_{j} \\
\left|a_{i j}\left(x, u_{1}\right)-a_{i j}\left(x, u_{2}\right)\right| \leq C_{L}\left|u_{1}-u_{2}\right|, \quad i, j=1, \ldots n
\end{gathered}
$$

Variational equality

$$
\int_{\Omega} a_{i j}(x, u) \frac{\partial u}{\partial x_{j}} \frac{\partial v}{\partial x_{i}} d x=\int_{\Omega} f u d x
$$

Electrical transformer
Introduction - model Introduction - references
Weak formulation
1D homogenization - setting up 1D homogenization - auxiliary lemma
1D homogenization - main theorem

Some auxiliary results
Auxiliary theorem
Linear homogenization 1
Linear homogenization 2
Linear homogenization 3
Homogenization - setting up
Homogenization - main theorem Homogenization - laminated
material
Coefficients obtained
experimentally

Weak formulation

Coeffi cients

$$
\begin{gathered}
a_{i j}(x, u)=a_{j i}(x, u), \quad i, j=1, \ldots n \\
\nu \eta_{i} \eta_{i} \leq a_{i j}(x, u) \eta_{i} \eta_{j} \\
\left|a_{i j}\left(x, u_{1}\right)-a_{i j}\left(x, u_{2}\right)\right| \leq C_{L}\left|u_{1}-u_{2}\right|, \quad i, j=1, \ldots n
\end{gathered}
$$

Variational equality

$$
\int_{\Omega} a_{i j}(x, u) \frac{\partial u}{\partial x_{j}} \frac{\partial v}{\partial x_{i}} d x=\int_{\Omega} f u d x
$$

Electrical transformer
Introduction - model Introduction - references
Weak formulation
1D homogenization - setting up 1D homogenization - auxiliary lemma
1D homogenization - main theorem

Some auxiliary results
Auxiliary theorem
Linear homogenization 1
Linear homogenization 2
Linear homogenization 3
Homogenization - setting up
Homogenization - main theorem Homogenization - laminated
material
Coefficients obtained
experimentally

Functional spaces

$$
f \in L^{2}(\Omega), \quad u, v \in H_{0}^{1}(\Omega)
$$

1D homogenization - setting up

$a(x, u)$ is measurable in x for all u, periodic in x with the period l

$$
\begin{aligned}
0<\gamma \leq a(x, u) & \leq C_{M} \\
\left|a\left(x, u_{1}\right)-a\left(x, u_{2}\right)\right| & \leq C_{L}\left|u_{1}-u_{2}\right| \\
a^{\epsilon}(x, u) & =a\left(\frac{x}{\epsilon}, u\right)
\end{aligned}
$$

Electrical transformer
Introduction - model Introduction - references
Weak formulation

1D homogenization - main theorem
Some auxiliary results
Auxiliary theorem
Linear homogenization 1
Linear homogenization 2
Linear homogenization 3
Homogenization - setting up
Homogenization - main theorem Homogenization - laminated material
Coefficients obtained
experimentally

1D homogenization - setting up

$a(x, u)$ is measurable in x for all u, periodic in x with the period l

$$
\begin{aligned}
0<\gamma \leq a(x, u) & \leq C_{M} \\
\left|a\left(x, u_{1}\right)-a\left(x, u_{2}\right)\right| & \leq C_{L}\left|u_{1}-u_{2}\right| \\
a^{\epsilon}(x, u) & =a\left(\frac{x}{\epsilon}, u\right)
\end{aligned}
$$

Variational equations

$$
\int_{c}^{d} a^{\epsilon}(x, u) \frac{d u^{\epsilon}}{d x} \frac{d v}{d x} d x=\int_{c}^{d} a^{\epsilon} f v d x,
$$

Electrical transformer
Introduction - model Introduction - references
Weak formulation
lemma
1D homogenization - main
theorem
Some auxiliary results
Auxiliary theorem
Linear homogenization 1
Linear homogenization 2
Linear homogenization 3
Homogenization - setting up
Homogenization - main theorem Homogenization - laminated
material
Coefficients obtained
experimentally

1D homogenization - setting up

$a(x, u)$ is measurable in x for all u, periodic in x with the period l

$$
\begin{aligned}
0<\gamma \leq a(x, u) & \leq C_{M} \\
\left|a\left(x, u_{1}\right)-a\left(x, u_{2}\right)\right| & \leq C_{L}\left|u_{1}-u_{2}\right| \\
a^{\epsilon}(x, u) & =a\left(\frac{x}{\epsilon}, u\right)
\end{aligned}
$$

Variational equations

$$
\int_{c}^{d} a^{\epsilon}(x, u) \frac{d u^{\epsilon}}{d x} \frac{d v}{d x} d x=\int_{c}^{d} a^{\epsilon} f v d x,
$$

Electrical transformer
Introduction - model Introduction - references
Weak formulation
lemma
1D homogenization - main
theorem
Some auxiliary results
Auxiliary theorem
Linear homogenization 1
Linear homogenization 2
Linear homogenization 3
Homogenization - setting up Homogenization - main theorem Homogenization - laminated
material
Coefficients obtained
experimentally

1D homogenization - auxiliary lemma

Lemma 1 Let the function $a(x, u)$ defined on $R \times R$ be bounded, measurable in x for all u, periodic in x, and satisfy the assumption above. Let $u^{\epsilon}(x)$ be a sequence of continuous functions defined on the founded interval $\langle c, d\rangle$ such that the limit

$$
u^{\epsilon} \rightarrow u^{0} \quad \text { in } C(\langle c, d\rangle) \quad \text { as } \epsilon \rightarrow 0
$$

holds. Then the following limit

$$
a^{\epsilon}\left(x, u^{\epsilon}(x)\right) \rightharpoonup\langle a\rangle\left(u^{0}(x)\right) \quad \text { in } L^{2}(c, d) \quad \text { as } \epsilon \rightarrow 0
$$

Electrical transformer
Introduction - model
Introduction - references
Weak formulation
1D homogenization - setting up 1D homogenization - auxiliary

lemma

D homogenization - main
theorem
Some auxiliary results
Auxiliary theorem
Linear homogenization 1
Linear homogenization 2
Linear homogenization 3
folds true.

1D homogenization - main theorem

Theorem 1 Let the function $a(x, u)$ defined on $R \times R$ be bounded, measurable in x for all u, periodic in x, and satisfy the assumption above. Let $u^{\epsilon} \in H_{0}^{1}(c, d)$ be the sequence of solutions. Then the limits

$$
\begin{array}{ll}
u^{\epsilon}(x) \rightharpoonup u^{0}(x) & \text { in } H_{0}^{1}(c, d)
\end{array} \quad \text { as } \epsilon \rightarrow 0, ~ 子, ~ \text { as } \epsilon \rightarrow 0
$$

hold, where u^{0} is a solution to the variational equation

$$
\int_{c}^{d} a^{0}(x) \frac{d u_{0}}{d x}(x) v(x) d x=\int_{c}^{d} f v d x
$$

Electrical transformer
Introduction - model Introduction - references
Weak formulation
1D homogenization - setting up
1D homogenization - auxiliary lemma
1D homogenization - main
theorem
Some auxiliary results
Auxiliary theorem
Linear homogenization 1
Linear homogenization 2
Linear homogenization 3
Homogenization - setting up
Homogenization - main theorem Homogenization - laminated
material
Coefficients obtained
experimentally
which holds for all $v \in H_{0}^{1}(c, d)$.

$$
a^{0}(u)=\left(\left\langle\frac{1}{a}\right\rangle(u)\right)^{-1}
$$

$$
\xi^{\epsilon}(x)=a^{\epsilon}\left(x, u^{\epsilon}(x)\right) \frac{d u^{\epsilon}(x)}{d x}, \quad \xi^{0}(x)=a^{0}\left(u^{0}(x)\right) \frac{d u^{0}(x)}{d x} .
$$

Some auxiliary results

$a_{i j}(x)$ are defi ned on a bounded domain with a Lipschitz boundary.

$$
\begin{aligned}
a_{i j}(x) & =a_{j i}(x), \\
\nu \xi_{i} \xi_{i} & \leq a_{i j}(x) \xi_{i} \xi_{j} \\
\left|a_{i j}(x)\right| & \leq C_{M}, \quad i, j=1, \ldots n
\end{aligned}
$$

Electrical transformer
Introduction - model Introduction - references
Weak formulation
1D homogenization - setting up
1D homogenization - auxiliary
lemma
1D homogenization - main
theorem

Some auxiliary results

$a_{i j}(x)$ are defi ned on a bounded domain with a Lipschitz boundary.

$$
\begin{aligned}
a_{i j}(x) & =a_{j i}(x), \\
\nu \xi_{i} \xi_{i} & \leq a_{i j}(x) \xi_{i} \xi_{j} \\
\left|a_{i j}(x)\right| & \leq C_{M}, \quad i, j=1, \ldots n
\end{aligned}
$$

Electrical transformer
Introduction - model Introduction - references
Weak formulation
1D homogenization - setting up
1D homogenization - auxiliary
lemma
1D homogenization - main
theorem
Some auxiliary results

Auxiliary theorem

Linear homogenization 1
Linear homogenization 2
Linear homogenization 3
Homogenization - setting up
Homogenization - main theorem Homogenization - laminated
material
Coefficients obtained
experimentally
where $f \in L^{2}(\Omega)$ and $u, v \in H_{0}^{1}(\Omega)$.

Auxiliary theorem

Theorem 2 Let $a_{i j}(x), i, j,=1, \ldots n$ satisfy the assumptions above, Ω is a bounded domain with a Lipschitz boundary and $f \in L^{p}(\Omega)$, where $p>\frac{n}{2}$. Then the solution to the variational equation is continuous on $\bar{\Omega}$ and the inequality

$$
|u(x)-u(y)| \leq C_{N}\|f\|_{L^{p}(\Omega)}|x-y|^{\lambda}
$$

holds for any $x, y \in \Omega$, where C_{N} is a positive constant which depends only on ν, C_{M}, Ω, n and λ satisfy the inequalities $0<\lambda<1$ and depends only ν, C_{M}, Ω, n as well.

Electrical transformer
Introduction - model
Introduction - references
Weak formulation
1D homogenization - setting up
1D homogenization - auxiliary lemma
1D homogenization - main theorem
Some auxiliary results

Linear homogenization 1

Mean value

$$
\begin{gathered}
\langle g\rangle(u)=\frac{1}{|Y|} \int_{Y} g(x, u) d x \\
\text { where } Y=\left\langle 0, l_{1}\right\rangle \times \ldots \times\left\langle 0, l_{n}\right\rangle \text { and }|Y|=l_{1} \ldots l_{n}
\end{gathered}
$$

Electrical transformer

Introduction - model Introduction - references
Weak formulation
1D homogenization - setting up 1D homogenization - auxiliary lemma
1D homogenization - main theorem

Some auxiliary results
Auxiliary theorem
Linear homogenization 1
Linear homogenization 2
Linear homogenization 3
Homogenization - setting up
Homogenization - main theorem Homogenization - laminated material
Coefficients obtained
experimentally

Linear homogenization 1

Mean value

$$
\langle g\rangle(u)=\frac{1}{|Y|} \int_{Y} g(x, u) d x
$$

where $Y=\left\langle 0, l_{1}\right\rangle \times \ldots \times\left\langle 0, l_{n}\right\rangle$ and $|Y|=l_{1} \ldots l_{n}$.
Auxiliary variational equations

$$
\int_{Y} a_{i j}(x)\left(\frac{\partial \chi_{k}}{\partial x_{j}}+\delta_{j k}\right) \frac{\partial \psi}{\partial x_{i}} d x=0, \quad k=1, \ldots n
$$

where the functions $\psi, \chi_{k} \in H_{p e r}^{1}(Y)$.
Electrical transformer
Introduction - model Introduction - references
Weak formulation
1D homogenization - setting up 1D homogenization - auxiliary lemma
1D homogenization - main
theorem
Some auxiliary results
Auxiliary theorem
Linear homogenization 1
Linear homogenization 2
Linear homogenization 3 Homogenization - setting up Homogenization - main theorem Homogenization - laminated material
Coefficients obtained
experimentally

Linear homogenization 1

Mean value

$$
\langle g\rangle(u)=\frac{1}{|Y|} \int_{Y} g(x, u) d x
$$

where $Y=\left\langle 0, l_{1}\right\rangle \times \ldots \times\left\langle 0, l_{n}\right\rangle$ and $|Y|=l_{1} \ldots l_{n}$ ．
Auxiliary variational equations

$$
\int_{Y} a_{i j}(x)\left(\frac{\partial \chi_{k}}{\partial x_{j}}+\delta_{j k}\right) \frac{\partial \psi}{\partial x_{i}} d x=0, \quad k=1, \ldots n
$$

where the functions $\psi, \chi_{k} \in H_{p e r}^{1}(Y)$ ．
Homogenized coeffi cients

$$
a_{i j}^{0}=\left\langle a_{i j}\right\rangle+\left\langle a_{i k} \frac{\partial \chi_{j}}{\partial x_{k}}\right\rangle, \quad i, j=1, \ldots n
$$

Electrical transformer
Introduction－model Introduction－references
Weak formulation
1D homogenization－setting up 1D homogenization－auxiliary lemma
1D homogenization－main
theorem
Some auxiliary results
Auxiliary theorem
Linear homogenization 1
Linear homogenization 2
Linear homogenization 3 Homogenization－setting up Homogenization－main theorem Homogenization－laminated material
Coefficients obtained

Linear homogenization 2

Let $a_{i j}^{z}(x), z=1, \ldots m, i, j=1, \ldots n$ are periodic functions in x with the period $l=\left(l_{1}, \ldots l_{n}\right), \Omega$ be a domain which is divided into subdomains $\Omega_{z}, z=1, \ldots m$.

$$
\begin{array}{ll}
\tilde{a}_{i j}^{\epsilon}(x)=a_{i j}^{z}\left(\frac{x}{\epsilon}\right) & \text { as } \quad x \in \Omega_{z}, \\
\tilde{a}_{i j}^{0}(x)=a_{i j}^{z, 0} & \text { as } \quad x \in \Omega_{z}, \quad i, j=1, \ldots n \tag{as}
\end{array}
$$

Electrical transformer
Introduction - model
Introduction - references
Weak formulation
1D homogenization - setting up 1D homogenization - auxiliary lemma
1D homogenization - main
theorem
Some auxiliary results
Auxiliary theorem
Linear homogenization 1
Linear homogenization 2
Linear homogenization 3
Homogenization - setting up
Homogenization - main theorem Homogenization - laminated material
Coefficients obtained
experimentally

Linear homogenization 2

Let $a_{i j}^{z}(x), z=1, \ldots m, i, j=1, \ldots n$ are periodic functions in x with the period $l=\left(l_{1}, \ldots l_{n}\right), \Omega$ be a domain which is divided into subdomains $\Omega_{z}, z=1, \ldots m$.

$$
\begin{array}{ll}
\tilde{a}_{i j}^{\epsilon}(x)=a_{i j}^{z}\left(\frac{x}{\epsilon}\right) & \text { as } \quad x \in \Omega_{z}, \\
\tilde{a}_{i j}^{0}(x)=a_{i j}^{z, 0} & \text { as } \quad x \in \Omega_{z}, \quad i, j=1, \ldots n
\end{array}
$$

Electrical transformer
Introduction - model Introduction - references
Weak formulation
1D homogenization - setting up
1D homogenization - auxiliary lemma
1D homogenization - main
theorem
Some auxiliary results
Auxiliary theorem
Linear homogenization 1
Linear homogenization 2
Linear homogenization 3
Homogenization - setting up
Homogenization - main theorem Homogenization - laminated
material
Coefficients obtained
experimentally

Linear homogenization 3

Theorem 3 Let u^{ϵ}, u^{0} be solutions to the variational equations above, then the limits

$$
\begin{aligned}
u^{\epsilon} \rightharpoonup u^{0} \quad \text { in } H_{0}^{1}(\Omega) & \text { as } \epsilon \rightarrow 0, \\
\xi_{i}^{\epsilon} \rightharpoonup \xi_{i}^{0} \quad \text { in } L^{2}(\Omega) & \text { as } \epsilon \rightarrow 0, \quad i=1, \ldots n
\end{aligned}
$$

hold, where

$$
\xi_{i}^{\epsilon}=\tilde{a}_{i j}^{\epsilon} \frac{\partial u^{\epsilon}}{\partial x_{j}}, \quad \xi_{i}^{0}=\tilde{a}_{i j}^{0} \frac{\partial u^{0}}{\partial x_{j}}, \quad i=1, \ldots n .
$$

Electrical transformer
Introduction - model Introduction - references
Weak formulation
1D homogenization - setting up 1D homogenization - auxiliary lemma
1D homogenization - main
theorem
Some auxiliary results
Auxiliary theorem
Linear homogenization 1
Linear homogenization 2
Linear homogenization 3

Homogenization - main theorem Homogenization - laminated material
Coefficients obtained
experimentally

Homogenization - setting up

Study the following variational equations

$$
\int_{Y} a_{i j}(x, u)\left(\frac{\partial \chi_{k}(x, u)}{\partial x_{j}}+\delta_{j k}\right) \frac{\partial \psi}{\partial x_{i}} d x=0, \quad k=1, \ldots n
$$

which play the same role as the similar equation in linear homogenization.

Electrical transformer
Introduction - model introduction - references
Weak formulation
1D homogenization - setting up
1D homogenization - auxiliary
lemma
D homogenization - main
theorem
Some auxiliary results
Auxiliary theorem
Linear homogenization 1
Linear homogenization 2
Linear homogenization 3

Homogenization - main theorem Homogenization - laminated
material
Coefficients obtained
experimentally

Homogenization - setting up

Study the following variational equations

$$
\int_{Y} a_{i j}(x, u)\left(\frac{\partial \chi_{k}(x, u)}{\partial x_{j}}+\delta_{j k}\right) \frac{\partial \psi}{\partial x_{i}} d x=0, \quad k=1, \ldots n
$$

which play the same role as the similar equation in linear homogenization.

To guarantee the uniqueness, we study the equation on the space

$$
W=\left\{u \in H_{p e r}^{1}(Y) \mid \int_{Y} u d x=0\right\}
$$

Electrical transformer
Introduction - model Introduction - references
Weak formulation
1D homogenization - setting up
1D homogenization - auxiliary lemma
1D homogenization - main
theorem
Some auxiliary results
Auxiliary theorem
Linear homogenization 1
Linear homogenization 2
Linear homogenization 3

Homogenization－setting up

Study the following variational equations

$$
\int_{Y} a_{i j}(x, u)\left(\frac{\partial \chi_{k}(x, u)}{\partial x_{j}}+\delta_{j k}\right) \frac{\partial \psi}{\partial x_{i}} d x=0, \quad k=1, \ldots n
$$

which play the same role as the similar equation in linear homogenization．

To guarantee the uniqueness，we study the equation on the space

$$
W=\left\{u \in H_{p e r}^{1}(Y) \mid \int_{Y} u d x=0\right\}
$$

Electrical transformer
Introduction－model Introduction－references
Weak formulation
1D homogenization－setting up
1D homogenization－auxiliary lemma
1D homogenization－main
theorem
Some auxiliary results
Auxiliary theorem
Linear homogenization 1
Linear homogenization 2
Linear homogenization 3

Homogenization - main theorem

Theorem 4 Let $a_{i j}(x, u), i, j=1 \ldots n$ defined on $R^{n} \times R$ be bounded, measurable in x for all u, periodic in x, and satisfy the assumptions above. Let Ω be a bounded domain in R^{n} with a Lipschitz boundary and $f \in L^{p}(\Omega)$, where $p>\frac{n}{2}$ and $p \geq 2$. Let $u^{\epsilon} \in H_{0}^{1}(\Omega)$ be solutions to the quasilinear variational equation

$$
\int_{\Omega} a_{i j}^{\epsilon}\left(x, u^{\epsilon}\right) \frac{\partial u^{\epsilon}}{\partial x_{j}} \frac{\partial v}{\partial x_{i}} d x=\int_{\Omega} f v d x
$$

and $u^{0} \in H_{0}^{1}(\Omega)$ be a solution of the quasilinear variational

Electrical transformer
Introduction - model Introduction - references
Weak formulation
1D homogenization - setting up
1D homogenization - auxiliary lemma
1D homogenization - main
theorem
Some auxiliary results
Auxiliary theorem
Linear homogenization 1
Linear homogenization 2
Linear homogenization 3
Homogenization - setting up
Homogenization - main theorem
Homogenization - laminated
material
Coefficients obtained equations

$$
\int_{\Omega} a_{i j}^{0}\left(u^{0}\right) \frac{\partial u^{0}}{\partial x_{j}} \frac{\partial v}{\partial x_{i}} d x=\int_{\Omega} f v d x
$$

where variational equations are fulfilled for all $v \in H_{0}^{1}(\Omega)$. Then the limits

$$
\begin{array}{ll}
u^{\epsilon} \rightharpoonup u^{0} \quad \text { in } H_{0}^{1}(\Omega) & \text { as } \epsilon \rightarrow 0, \\
\xi_{i}^{\epsilon} \rightharpoonup \xi_{i}^{0} \quad \text { in } L^{2}(\Omega) & \text { as } \epsilon \rightarrow 0, \quad i=1, \ldots n
\end{array}
$$

Homogenization - laminated material

General case $-a_{i j}\left(x_{1}, u\right), i, j=1, \ldots n x_{1}$ with the period l_{1}.

$$
\begin{aligned}
a_{11}^{0}(u) & =\left\langle\frac{1}{a_{11}}\right\rangle(u) \\
a_{1 j}^{0}(u) & =\left\langle\frac{a_{1 j}}{a_{11}}\right\rangle(u), \quad 2 \leq j \leq u \\
a_{i j}^{0}(u) & =\left\langle\frac{a_{1 i}}{a_{11}}\right\rangle(u)\left\langle\frac{a_{1 j}}{a_{11}}\right\rangle(u)+\left\langle a_{i j}-\frac{a_{1 i} a_{1 j}}{a_{11}}\right\rangle(u), \quad 2 \leq i, j \leq n
\end{aligned}
$$

Electrical transformer Introduction - model Introduction - references
Weak formulation
1D homogenization - setting up
1D homogenization - auxiliary lemma
1D homogenization - main theorem
Some auxiliary results Auxiliary theorem
Linear homogenization 1
Linear homogenization 2
Linear homogenization 3
Homogenization - setting up
Homogenization - main theorem Homogenization - laminated

material

Coefficients obtained
experimentally

Homogenization - laminated material

General case $-a_{i j}\left(x_{1}, u\right), i, j=1, \ldots n x_{1}$ with the period l_{1}.

$$
\begin{aligned}
& a_{11}^{0}(u)=\left\langle\frac{1}{a_{11}}\right\rangle(u) \\
& a_{1 j}^{0}(u)=\left\langle\frac{a_{1 j}}{a_{11}}\right\rangle(u), \quad 2 \leq j \leq u \\
& a_{i j}^{0}(u)=\left\langle\frac{a_{1 i}}{a_{11}}\right\rangle(u)\left\langle\frac{a_{1 j}}{a_{11}}\right\rangle(u)+\left\langle a_{i j}-\frac{a_{1 i} a_{1 j}}{a_{11}}\right\rangle(u), \quad 2 \leq i, j \leq n
\end{aligned}
$$

Electrical transformer
Introduction - model Introduction - references
Weak formulation
1D homogenization - setting up
1D homogenization - auxiliary lemma
1D homogenization - main
theorem
Some auxiliary results
Auxiliary theorem
Linear homogenization 1
Linear homogenization 2
Linear homogenization 3
Homogenization - setting up
Homogenization - main theorem Homogenization - laminated

material

Coefficients obtained
experimentally

$$
\begin{aligned}
a_{11}^{0}(u) & =\left\langle\frac{1}{a_{11}}\right\rangle(u) \\
a_{i i}^{0}(u) & =\left\langle a_{i i}\right\rangle(u), \quad 2 \leq i \leq n \\
a_{i j}^{0}(u) & =0, \quad i \neq j
\end{aligned}
$$

Coefficients obtained experimentally

Electrical transformer
Introduction - model Introduction - references
Weak formulation
1D homogenization - setting up 1D homogenization - auxiliary lemma
1D homogenization - main theorem

Some auxiliary results
Auxiliary theorem
Linear homogenization 1
Linear homogenization 2 Linear homogenization 3 Homogenization - setting up Homogenization - main theorem Homogenization - laminated
material
Coefficients obtained
experimentally

$$
\begin{aligned}
a_{i j}^{0}(u) & =0, \quad i \neq j \\
a_{22}^{0}(u) & =a_{33}^{0}(u)
\end{aligned}
$$

Thank you

