Sparsity pattern for a divergent IAD method

Ivana Pultarová
Czech Technical University in Prague
Czech Republic, Europe
http://mat.fsv.cvut.cz/ivana

ILAS'05 - Regina - Saskatchewan - Canada

Outline

- Describing the used iterative aggregation - disaggregation method, 3-5.
- What is known about the convergence of this IAD method, 6-8.
- Divergent process - condition for sparsity pattern, 9-12.
- Conclusion, 13.
- References, 14.

We assume an $N \times N$ irreducible acyclic column stochastic matrix B.
We compute the stationary probability distribution vector \hat{x},

$$
B \hat{x}=\hat{x}
$$

We use a two - level iterative method:
the iterative aggregation - disaggregation (IAD) method
based on the aggregation groups of events, solving a smaller problem amost exactly, prolongation the solution to the original size and correction on the original level.

Basic notations

n is number of aggregation groups $\left(G_{i}\right)$.
G_{1}, \ldots, G_{n} are sets of indexes of events, disjoined, $\cup_{i=1}^{n} G_{i}=\{1, \ldots, N\}$.
I is an identity matrix and e is a vector of ones.
R is a reduction matrix, $R_{i j}=1$ if $j \in G_{i}$ and 0 otherwise.
$S(x)$ is a prolongation matrix, $S_{j i}(x)=x_{j} / \sum_{k \in G_{i}} x_{k}$ if $j \in G_{i}$ and 0 otherwise.
$P(x)$ is projection $P(x)=S(x) R$.

Five steps of IAD method, steps 2-5 are repeated:

1 Initial approximation $x^{0}>0$ is selected, k is set to 0 .
2 Solving $R B S\left(x^{k}\right) z=z$.
3 Prolongation z to $y^{k}=S\left(x^{k}\right) z$.
4 Correction by some appropriate matrix T, T comes from weakly regular splitting, $I-B=M-W=M(I-T)$,

$$
x^{k+1}=T y^{k} .
$$

5 Test for convergence.

Note.
In step $4, T$ can be taken as B which gives the power method, or it can correspond to block Jacobi or block Gauss-Seidel methods, etc.

We will consider $T=B$ in the following.
Then it holds

$$
x^{k+1}-\hat{x}=J\left(x^{k}\right)\left(x^{k}-\hat{x}\right),
$$

where

$$
J(x)=B(I-P(x) Z)^{-1}(I-P(x)),
$$

where Z comes from the spectral decomposition of B,

$$
B=P+Z, \quad P^{2}=P, \quad P Z=Z P=0
$$

P is the Perron projection of B.

Observing $J(x)$ we can find the sufficient local convergence condition.
Based on Mandel, Sekerka (83) and Marek, Mayer (98) we get

Theorem. When B contains at least one positive row then the IAD method is locally convergent and the asymptotic rate of convergence is $\sqrt{1-\alpha}$, where α is the minimum in this row.
When $B>\alpha P$ then the IAD method is locally convergent and the asymptotic rate of convergence is $1-\alpha$.

Analysing each step in the proof, we want to find some weaker conditions for local convergence. And we can come to the condition

$$
P(\hat{x}) B v=0 \quad \Rightarrow \quad(I-P(\hat{x})) B v=0
$$

or equivalently

$$
P(\hat{x}) B v=0 \quad \Rightarrow \quad B v=0
$$

This is fulfilled for example when the assumptions of the following theorem hold.

Theorem. Let in some IAD iteration there exist $b_{i}>0$ such that

$$
x_{G_{i}}^{k}=b_{i} \hat{x}_{G_{i}}^{k}
$$

$$
\text { for } i=1, \ldots, n . \text { Then } x^{k+1}=\hat{x}
$$

We can call it the "rapid convergence", the exact solution is obtained after very small number of steps, which can be estimated in advance.

Example.

a) Each set of rows of B corresponding to a particular aggregation group is a rank one matrix \Rightarrow IAD method yields the exact solution after at most 2 steps.
b) $I-B=M-W, M$ block diagonal and each set if rows of W corresponding to a particular aggregation group is a rank one matrix \Rightarrow IAD method results in the exact solution after at most 2 steps when using $T=M^{-1} W$.

Now we aim at finding the "boundary-line" between divergence and convergence (and rapid convergence) and we present here a small contribution to it.

We have discovered the sparsity pattern of B that leads to locally divergent IAD process when setting $T=B$ in step 2 .

Theorem. The approximations $x^{k}, k=1,2, \ldots$ obtained by the IAD method fulfill

$$
B P\left(x^{k}\right) x^{k+1}=x^{k+1}
$$

Let us sellect an arbitrary aggregation group, say G_{i}. Then after a proper symmetric permutation, B can be partitioned into

$$
B=\left(\begin{array}{cc}
B_{11} & B_{G_{i}}^{C} \\
B_{G_{i}}^{R} & B_{G_{i}}
\end{array}\right)
$$

Similarly, let us permute and partition $P\left(x^{k}\right)$ into the block diagonal matrix

$$
P\left(x^{k}\right)=\left(\begin{array}{cc}
P\left(x^{k}\right)_{1} & 0 \\
0 & P\left(x^{k}\right)_{G_{i}}
\end{array}\right)
$$

Then the equation $B P\left(x^{k}\right) x^{k+1}=x^{k+1}$ can be rewritten to

$$
x^{k+1}=\rho_{k+1} \tilde{B}_{G_{i}}\left(x^{k}\right) e,
$$

where ρ_{k+1} is a scaling factor and

$$
\tilde{B}_{G_{i}}\left(x^{k}\right)=\left(\begin{array}{cc}
0 & \left(I-B_{11} P\left(x^{k}\right)_{1}\right)^{-1} B_{G_{i}}^{C} \\
0 & S_{G_{i}}\left(x^{k}\right)
\end{array}\right)\binom{0}{P\left(x^{k}\right)_{G_{i}}}
$$

where $S_{G_{i}}$ is a stochastic matrix,

$$
S_{G_{i}}\left(x^{k}\right)=B_{G_{i}}+B_{G_{i}}^{R} P\left(x^{k}\right)_{1}\left(I-B_{11} P\left(x^{k}\right)_{1}\right)^{-1} B_{G_{i}}^{C}
$$

Theorem. When $P\left(x^{k}\right)_{1}\left(I-B_{11} P\left(x^{k}\right)_{1}\right)^{-1}$ is positive and $S_{G_{i}}(x)$ is cyclic for some x then it does not depend on x up to one block of cyclicity.

Now we come to the two final theorems of this talk.

Theorem. When $S_{G_{i}}(x)$ is cyclic of index m for some x then the sequence $\left\{x^{k}\right\}_{k=0}^{\infty}$ obtained by the IAD method can converg to the exact solution \hat{x}, only if the partial sums of part $x_{G_{i}}^{0}$ of the initial approximation x^{0} corresponding to the block of cyclicity of $S_{G_{i}}(x)$ are equal.

This immediatelly yields

Theorem. When $S_{G_{i}}(x)$ is cyclic for some x then in each neighbourhood $U(\hat{x})$ of the exact solution \hat{x} there exist a zero measured set $\tilde{U}(\hat{x})$ such that $\left\{x^{k}\right\}_{k=0}^{\infty}$ obtained by the IAD algorithm doesn't converge to the exact solution \hat{x} for any $x^{0} \in U(\hat{x}) \backslash \tilde{U}(\hat{x})$.

Example 1.

$$
B=\left(\begin{array}{ccc}
1 / 2 & 0 & 1 / 2 \\
1 / 2 & 0 & 1 / 2 \\
0 & 1 & 0
\end{array}\right)
$$

and $G_{1}=\{1\}$ and $G_{2}=\{2,3\}$.

Example 2.

$$
B=\left(\begin{array}{ccc|cccc}
\times & \ldots & \times & \times & 0 & \ldots & 0 \\
\vdots & & \vdots & \vdots & \vdots & & \vdots \\
\times & \ldots & \times & \times & 0 & \ldots & 0 \\
\hline 0 & \ldots & 0 & 0 & 0 & \ldots & \times \\
\times & \ldots & \times & \times & 0 & \ldots & 0 \\
\vdots & & \vdots & \vdots & \vdots & & \vdots \\
0 & \ldots & 0 & 0 & \ldots & \times & 0
\end{array}\right) .
$$

Conclusion.

- The local convergence of IAD method is not ensured for B irreducible a acyclic.
- The above results are valid only for $T=B$.
- Comparing to the two - groups case of Ipsen, Kirkland (2004).
- Open questions. Is $T=B^{2}$ sufficient for local convergence? Is $T=$ $M^{-1} W$, where $I-B=M-W$ and M is block diagonal of $I-B$ corresponding to the aggregation groups, sufficient for local convergence?

References.

- P. J. Courtois, P. Semal, Block iterative algorithms for stochastic matrices, 1986
- I. C. F. Ipsen, S. Kirkland, Convergence analysis of an improved PageRank algorithm, 2004
- I. Marek, P. Mayer, Convergence theory of some classes of iterative aggregation - disaggregation methods for computing stationary probability vectors of stochastic matrices, 2003
- I. Marek, I. Pultarová, A note on local and global convergence analysis of iterative aggregation-disaggregation methods, 2004
- W. J. Stewart, Introduction to the numerical solutions of Markov chains, 1994

