INDEFINITE PRECONDITIONING OF SYMMETRIC INDEFINITE SYSTEMS

Miro Rozložník

Institute of Computer Science Czech Academy of Sciences and Technical university of L:berec CZ-182 07 Prague, Czech Republic email: miro@cs.cas.cz

ALGORITMY 2005 - conference on scientific computing, Podbanské, Slovakia, March 13-18, 2005

OUTLINE

- 1. SYMMETRIC INDEFINITE SYSTEM + POSITIVE DEFI-NITE PRECONDITIONER: CG OR MINRES (OR SYMMLQ) METHOD
- 2. SYMMETRIC INDEFINITE SYSTEM + INDEFINITE PRE-CONDITIONER:
 SIMPLIFIED BI-CG OR QMR METHOD ↔ PRECONDI-TIONED CG METHOD
- 3. INDEFINITE SADDLE POINT PROBLEMS + INDEF-INITE (CONSTRAINT OR PROJECTION) PRECON-DITIONERS: PRECONDITIONED CG METHOD

SYMMETRIC INDEFINITE SYSTEM, SYMMETRIC POSITIVE DEFINITE PRECONDITIONER

$$Ax = b$$

 \boldsymbol{A} symmetric indefinite, \boldsymbol{M} positive definite

$$M^{-1/2}AM^{-1/2}\tilde{x} = M^{-1/2}b, \quad x = M^{-1/2}\tilde{x}$$

 $\tilde{A}\tilde{x} = \tilde{b}, \quad \tilde{A} \text{ symmetric (indefinite)}!$

ITERATIVE SOLUTION OF PRECONDITIONED (SYMMETRIC INDEFINITE) SYSTEM

PRECONDITIONED MINRES (MR), SYMMLQ (ME) - VARI-OUS IMPLEMENTATIONS

CG APPLIED TO SYMMETRIC BUT INDEFINITE SYSTEM:

CG iterate exists at least at every second step (tridiagonal form T_n is nonsingular at least at every second step)

Paige, Saunders, 1975

peak/plateau behavior:

CG converges fast \rightarrow MINRES is not much better than CG CG norm increases (peak) \rightarrow MINRES stagnates (plateau) Greenbaum, Cullum, 1996

THE CG METHOD WITH POSITIVE DEFINITE PRECONDITIONING

$$\mathsf{CG}(ilde{A}$$
 , $ilde{b})$: $ilde{x}_k o ilde{x}$

 $CG(M^{-1/2}AM^{-1/2}, M^{-1/2}b, (...)): x_k = M^{-1/2}\tilde{x}_k$

$$\iff$$
 CG $(M^{-1}A, M^{-1}b, (.)_M)$: $x_k \rightarrow x$

 $\iff \mathsf{PCG}(A, b, M^{-1}, (.))$

e.g. books of Saad, Greenbaum, ...

THE MINRES METHOD WITH POSITIVE DEFINITE PRECONDITIONING

 $\mathsf{MINRES}(ilde{A}\ ,\ ilde{b})$: $ilde{x}_k o ilde{x}$

MINRES $(M^{-1/2}AM^{-1/2}, M^{-1/2}b, (.))$: $x_k = M^{-1/2}\tilde{x}_k$

 \iff MINRES $(M^{-1}A, M^{-1}b, (.)_M)$: $x_k \rightarrow x$

 \iff PMINRES(A, b, M^{-1} , (.)_M)

 \neq PMINRES(A, b, M^{-1} , (.))!

Paige, Saunders, 1975, Battermann, 1996

SYMMETRIC INDEFINITE SYSTEM, INDEFINITE PRECONDITIONER

 ${\cal M}$ symmetric indefinite

$$M = M_1 M_2 = M_2^T M_1^T = M^T, \quad M_2 \neq M_1^T$$

 M_1, M_2 can be nonsymmetric

$$M_1^{-1}AM_2^{-1}y = M_1^{-1}b$$
, $x = M_2^{-1}y$

 $\tilde{A}\tilde{x} = \tilde{b}, \quad \tilde{A} \text{ nonsymmetric!}$

ITERATIVE SOLUTION OF (INDEFINITELY) PRECONDITIONED (NONSYMMETRIC) SYSTEM

$$\begin{split} \tilde{A} &= M_1^{-1} A M_2^{-1} , \quad \mathcal{J} = M_1^T M_2^{-1} \\ & \Longrightarrow \\ \tilde{A}^T \mathcal{J} = \mathcal{J} \tilde{A} \end{split}$$

 $\mathcal{J}\text{-}\mathsf{SYMMETRIC}$ variant of (nonsymmetric) lanczos process

Freund, Nachtigal, 1995

8

SIMPLIFIED \mathcal{J} -SYMMETRIC LANCZOS PROCESS AND QMR

$$\tilde{A}^T \mathcal{J} = \mathcal{J} \tilde{A}$$

$$AV_n = V_{n+1}T_{n+1,n}, A^T W_n = W_{n+1}\tilde{T}_{n+1,n}$$

$$W_n^T V_n = I \Longrightarrow W_n = \mathcal{J} V_n$$

 $\mathcal{J}\text{-}\mathsf{SYMMETRIC}$ variant of Bi-CG $\mathcal{J}\text{-}\mathsf{SYMMETRIC}$ variant of QMR

Freund, Nachtigal, 1995

ITERATIVE SOLUTION OF PRECONDITIONED SYSTEM WITH SIMPLIFIED LANCZOS PROCESS

QMR-from-BiCG:

$\mathcal{J}\text{-symmetric Bi-CG} + \text{QMR-smoothing} \\ \implies \mathcal{J}\text{-symmetric QMR}$

Freund, Nachtigal, 1995

Walker, Zhou 1994

peak/plateau behavior:

QMR does not improve the convergence of Bi-CG (BiCG converges fast \rightarrow QMR is not much better, Bi-CG norm increases \rightarrow quasi-residual of QMR stagnates)

Greenbaum, Cullum, 1996

FINITE PRECISION ARITHMETIC:

smoothing does not improve but also does not deteriorate the rate of primary (unsmoothed Bi-CG) methods (FP analogues for the peak/ plateau property)

smoothing does not improve the final accuracy of the primary method (Bi-CG/QMR on the same level)

Gutknecht, R, 2001

focus on implementation: coupled two-term recursions over the three-term recurrences

Gutknecht, Strakoš, 2000

two-term QMR implementation or two-term Bi-CG + QMR smoothing

SIMPLIFIED BI-CG ALGORITHM \iff PRECONDITIONED CG ALGORITHM

 \mathcal{J} -symmetric Bi-CG algorithm (classical two-term BI-CG (BIOMIN))

is nothing but

classical (Hestenes-Stiefel) CG algorithm

preconditioned with (indefinite) matrix $\mathcal{J}!$

INDEFINITE SYSTEM, INDEFINITE PRECONDITIONER + CLASSICAL CONJUGATE GRADIENTS METHOD

PCG applied to (symmetric) indefinite system Ax = b with (symmetric) indefinite preconditioner M

is in fact

CG applied to nonsymmetric (and often to non-normal) preconditioned system with AM^{-1} and bilinear form $(,)_M$

Nevertheless, it frequently works in practice. Theoretical results?

SADDLE POINT PROBLEM AND INDEFINITE CONSTRAINT PRECONDITIONER

$$\begin{pmatrix} A & B \\ B^T & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} f \\ g \end{pmatrix}$$

$$M = \begin{pmatrix} I & B \\ B^T & 0 \end{pmatrix}$$

PCG method starting with particular right-hand side or initial guess: $\begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$, $r_0 = \begin{pmatrix} s_0 \\ 0 \end{pmatrix}$

R, Simoncini, 2001, Gould et al., 2000

SADDLE POINT PROBLEM AND INDEFINITE PRECONDITIONER

$$\begin{pmatrix} A & B \\ B^T & -C \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} f \\ g \end{pmatrix}$$
$$M = \begin{pmatrix} A & B \\ B^T & -C + B^T A^{-1} B - D \end{pmatrix}$$

PCG method starting with particular right-hand side and initial guess: $\begin{pmatrix} x_0 \\ 0 \end{pmatrix}, r_0 = \begin{pmatrix} 0 \\ s_0 \end{pmatrix}$

Durazzi, Ruggiero, 2001