On the next-to-last CG and MR iteration step

Petr Tichý ${ }^{\dagger *}$

joint work with

Jörg Liesen*

${ }^{\dagger}$ Institute of Computer Science AS CR,
*Technical University of Berlin

March 13-18, 2005. ALGORITMY 2005 - Conference on Scientific Computing,
Vysoké Tatry, Podbanské, Slovakia

A system of linear algebraic equations

Consider a system of linear algebraic equations

$$
\mathbf{A} x=b
$$

$\mathbf{A} \in \mathbb{R}^{n \times n}$ is nonsingular and normal, $b \in \mathbb{R}^{n}$.

- How to construct an approximation to the solution?

A system of linear algebraic equations

Consider a system of linear algebraic equations

$$
\mathbf{A} x=b
$$

$\mathbf{A} \in \mathbb{R}^{n \times n}$ is nonsingular and normal, $b \in \mathbb{R}^{n}$.

- How to construct an approximation to the solution?

Krylov subspace methods \mapsto Given $x_{0} \in \mathbb{R}^{n}, r_{0}=b-\mathbf{A} x_{0}$. Find x_{i},

$$
x_{i} \in x_{0}+\mathcal{K}_{i}\left(\mathbf{A}, r_{0}\right) \quad \text { such that } \quad r_{i} \perp \mathcal{C}_{i}
$$

where $r_{i}=b-\mathbf{A} x_{i}, \mathcal{K}_{i}\left(\mathbf{A}, r_{0}\right) \equiv \operatorname{span}\left\{r_{0}, \cdots, \mathbf{A}^{i-1} r_{0}\right\}$.

OR and MR Krylov subspace methods

Let $x_{0}=0$, i.e. $r_{0}=b-\mathbf{A} x_{0}=b$ (for simplicity).
Orthogonal Residual (OR) and Minimal Residual (MR) approach
(OR)

$$
\text { Find } \quad x_{i} \in \mathcal{K}_{i}(\mathbf{A}, b) \quad \text { such that } \quad r_{i} \perp \mathcal{K}_{i}(\mathbf{A}, b)
$$

(MR) Find $x_{i} \in \mathcal{K}_{i}(\mathbf{A}, b)$ such that $r_{i} \perp \mathbf{A} \mathcal{K}_{i}(\mathbf{A}, b)$.

OR and MR Krylov subspace methods

Let $x_{0}=0$, i.e. $r_{0}=b-\mathbf{A} x_{0}=b$ (for simplicity).
Orthogonal Residual (OR) and Minimal Residual (MR) approach
(OR) Find $x_{i} \in \mathcal{K}_{i}(\mathbf{A}, b)$ such that $r_{i} \perp \mathcal{K}_{i}(\mathbf{A}, b)$.
(MR) Find $x_{i} \in \mathcal{K}_{i}(\mathbf{A}, b)$ such that $r_{i} \perp \mathbf{A} \mathcal{K}_{i}(\mathbf{A}, b)$.

Optimality properties
(OR) $\quad\left\|e_{i}\right\|_{\mathbf{A}}=\min _{p \in \pi_{i}}\|p(\mathbf{A}) x\|_{\mathbf{A}} \quad$ (if \mathbf{A} is SPD),
(MR)

$$
\left\|r_{i}\right\|=\min _{p \in \pi_{i}}\|p(\mathbf{A}) b\|
$$

where $e_{i} \equiv x-x_{i}, \pi_{i} \equiv\{p$ is a polynomial; $\operatorname{deg}(p) \leq i ; p(0)=1\}$.

The problem of convergence

MR constructs approximations $x_{i} \in \mathcal{K}_{i}(\mathbf{A}, b)$ to the solution x of the system $\mathbf{A} x=b$ such that

$$
\left\|r_{i}\right\|=\min _{p \in \pi_{i}}\|p(\mathbf{A}) b\|
$$

- Our aim:

Description and understanding of this minimization process.

- Considered classes of matrices in this talk:

Normal matrices, symmetric and positive definite matrices, symmetric positive definite tridiagonal Toeplitz matrices.

- We denote the OR method for SPD matrices as the CG method (Conjugate Gradient).

Outline

1. Introduction
2. Convergence bounds
3. Formulas for the next-to-last CG and MR iteration step
4. Application to symmetric tridiagonal Toeplitz matrices
5. Example: 1D Poisson equation
6. Conclusions

Convergence of the MR method

Let A be normal, $L \equiv\left\{\lambda_{1}, \ldots, \lambda_{n}\right\},\|b\|=1$. Then

$$
\left\|r_{i}\right\|=\min _{p \in \pi_{i}}\|p(\mathbf{A}) b\|
$$

Convergence of the MR method

Let A be normal, $L \equiv\left\{\lambda_{1}, \ldots, \lambda_{n}\right\},\|b\|=1$. Then

$$
\begin{aligned}
\left\|r_{i}\right\| & =\min _{p \in \pi_{i}}\|p(\mathbf{A}) b\| \\
& \leq \max _{\|b\|=1} \min _{p \in \pi_{i}}\|p(\mathbf{A}) b\| \quad \text { (worst-case) } \\
& =\min _{p \in \pi_{i}}\|p(\mathbf{A})\| \\
& =\min _{p \in \pi_{i}} \max _{\lambda_{j} \in L}\left|p\left(\lambda_{j}\right)\right|
\end{aligned}
$$

Convergence of the MR method

Let A be normal, $L \equiv\left\{\lambda_{1}, \ldots, \lambda_{n}\right\},\|b\|=1$. Then

$$
\begin{aligned}
\left\|r_{i}\right\| & =\min _{p \in \pi_{i}}\|p(\mathbf{A}) b\| \\
& \leq \max _{\|b\|=1} \min _{p \in \pi_{i}}\|p(\mathbf{A}) b\| \quad \text { (worst-case) } \\
& =\min _{p \in \pi_{i}}\|p(\mathbf{A})\| \\
& =\min _{p \in \pi_{i} \lambda_{j} \in L} \max \left|p\left(\lambda_{j}\right)\right|
\end{aligned}
$$

- In this sense we understand the MR-CG worst-case behaviour.
- How to describe $\left\|r_{i}\right\|$ or the worst-case bound in terms of input data?

General formula for the MR residual

Krylov matrix

$$
\mathbf{K}_{i+1} \equiv\left[b, \mathbf{A} b, \ldots, \mathbf{A}^{i} b\right] .
$$

Residual r_{i} can be written as
(Assumption: \mathbf{K}_{i+1} has full column rank)

$$
r_{i}=\left\|r_{i}\right\|^{2}\left(\mathbf{K}_{i+1}^{+}\right)^{H} e_{1} \quad \Rightarrow \quad\left\|r_{i}\right\|=\frac{1}{\left\|\left(\mathbf{K}_{i+1}^{+}\right)^{H} e_{1}\right\|}
$$

[Liesen \& Rozložník \& Strakoš '02, Ipsen '00]

General formula for the MR residual

Krylov matrix

$$
\mathbf{K}_{i+1} \equiv\left[b, \mathbf{A} b, \ldots, \mathbf{A}^{i} b\right]
$$

Residual r_{i} can be written as
(Assumption: \mathbf{K}_{i+1} has full column rank)

$$
r_{i}=\left\|r_{i}\right\|^{2}\left(\mathbf{K}_{i+1}^{+}\right)^{H} e_{1} \quad \Rightarrow \quad\left\|r_{i}\right\|=\frac{1}{\left\|\left(\mathbf{K}_{i+1}^{+}\right)^{H} e_{1}\right\|}
$$

[Liesen \& Rozložník \& Strakoš '02, Ipsen '00]

We consider A and b in the form

$$
\mathbf{A}=\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{H}, \quad b=\mathbf{Q}\left[\varrho_{1}, \ldots, \varrho_{n}\right]^{T} .
$$

We will assume that all eigenvalues of \mathbf{A} are distinct.

The next-to-last MR iteration step

Let $\varrho_{j} \neq 0$ for all j. Then

$$
\left\|r_{n-1}\right\|=\left(\sum_{j=1}^{n}\left|\frac{l_{j}}{\varrho_{j}}\right|^{2}\right)^{-1 / 2}, \quad l_{j} \equiv \prod_{\substack{k=1 \\ k \neq j}}^{n} \frac{\lambda_{k}}{\lambda_{k}-\lambda_{j}}
$$

[Liesen \& T. '04, Ipsen '00]

The next-to-last MR iteration step

Let $\varrho_{j} \neq 0$ for all j. Then

$$
\left\|r_{n-1}\right\|=\left(\sum_{j=1}^{n}\left|\frac{l_{j}}{\varrho_{j}}\right|^{2}\right)^{-1 / 2}, \quad l_{j} \equiv \prod_{\substack{k=1 \\ k \neq j}}^{n} \frac{\lambda_{k}}{\lambda_{k}-\lambda_{j}}
$$

[Liesen \& T. '04, Ipsen '00]
Using Cauchy’s inequality,

$$
\frac{\left\|r_{n-1}^{w}\right\|}{\left\|b_{M R}^{w}\right\|}=\left(\sum_{j=1}^{n}\left|l_{j}\right|\right)^{-1}
$$

where

$$
b_{M R}^{w}=\mathbf{Q}\left[\varrho_{1}^{w}, \ldots, \varrho_{n}^{w}\right]^{T}, \quad\left|\varrho_{k}^{w}\right|^{2}=\gamma\left|l_{k}\right|, \quad k=1, \ldots, n
$$

$\gamma>0$ is any scaling factor.

The next-to-last CG iteration step

CG can be seen as MR for a special right hand side \tilde{b},

$$
\min _{p \in \pi_{i}}\|p(\mathbf{A}) x\|_{\mathbf{A}}=\min _{p \in \pi_{i}}\left\|p(\mathbf{A}) \mathbf{A}^{1 / 2} x\right\|=\min _{p \in \pi_{i}}\|p(\mathbf{A}) \tilde{b}\| .
$$

The next-to-last CG iteration step

CG can be seen as MR for a special right hand side \tilde{b},

$$
\min _{p \in \pi_{i}}\|p(\mathbf{A}) x\|_{\mathbf{A}}=\min _{p \in \pi_{i}}\left\|p(\mathbf{A}) \mathbf{A}^{1 / 2} x\right\|=\min _{p \in \pi_{i}}\|p(\mathbf{A}) \tilde{b}\| .
$$

Then

$$
\begin{aligned}
\left\|e_{n-1}\right\|_{\mathbf{A}} & =\left(\sum_{j=1}^{n}\left|\frac{\lambda_{j}^{1 / 2} l_{j}}{\varrho_{j}}\right|^{2}\right)^{-1 / 2}, \quad \frac{\left\|e_{n-1}^{w}\right\|_{\mathbf{A}}}{\left\|x_{C G}^{w}\right\|_{\mathbf{A}}}=\left(\sum_{j=1}^{n}\left|l_{j}\right|\right)^{-1} \\
b_{C G}^{w} & =\mathbf{Q}\left[\varrho_{1}^{w}, \ldots, \varrho_{n}^{w}\right]^{T}, \quad\left|\varrho_{k}^{w}\right|^{2}=\gamma\left|\lambda_{k} l_{k}\right|, \quad k=1, \ldots, n
\end{aligned}
$$

$\gamma>0$ is any scaling factor.

The information about the next-to-last step

The next-to-last step of CG and MR is completely understood!

We know

- the convergence quantities,
- the worst-case convergence quantities and corresponding b^{w}.

The information about the next-to-last step

The next-to-last step of CG and MR is completely understood!

We know

- the convergence quantities,
- the worst-case convergence quantities and corresponding b^{w}.

How to use this information?

- We can study the influence of the right hand side,
- we can compare true convergence quantities with convergence bounds,
- we can determine right hand sides leading to the slowest convergence and identify the worst input data of our original problem.

Symmetric tridiagonal Toeplitz matrices

Consider linear algebraic systems $\mathbf{A} x=b$, where

$$
\mathbf{A}=\left[\begin{array}{cccc}
\alpha & \beta & & \\
\beta & \ddots & \ddots & \\
& \ddots & \ddots & \beta \\
& & \beta & \alpha
\end{array}\right] \in \mathbb{R}^{n \times n} .
$$

Let α and β be such that \mathbf{A} is symmetric and positive definite matrix.

Symmetric tridiagonal Toeplitz matrices

Consider linear algebraic systems $\mathbf{A} x=b$, where

$$
\mathbf{A}=\left[\begin{array}{cccc}
\alpha & \beta & & \\
\beta & \ddots & \ddots & \\
& \ddots & \ddots & \beta \\
& & \beta & \alpha
\end{array}\right] \in \mathbb{R}^{n \times n} .
$$

Let α and β be such that \mathbf{A} is symmetric and positive definite matrix.
Eigenvalues and eigenvectors of \mathbf{A} are known

$$
\begin{aligned}
\lambda_{k} & =\alpha+2 \beta \cos (k \pi h) \\
q_{k} & =(2 h)^{1 / 2}[\sin (k \pi h), \sin (2 k \pi h), \ldots, \sin (n k \pi h)]^{T},
\end{aligned}
$$

where $h \equiv(n+1)^{-1}$.

Worst-case bound versus classical κ-bound

Now we are able to determine l_{j} and the worst-case bound

$$
\frac{\left\|e_{n-1}^{w}\right\|_{A}}{\left\|e_{0}^{w}\right\|_{A}}=\left(\sum_{j=1}^{n}\left|l_{j}\right|\right)^{-1} \approx \frac{2 \nu^{n-1}}{1+\nu^{2}+\cdots+\nu^{2(n-1)}+\nu^{2 n}}
$$

where

$$
\nu \equiv \frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}, \quad \kappa=\frac{\lambda_{\max }}{\lambda_{\min }}
$$

Worst-case bound versus classical κ-bound

Now we are able to determine l_{j} and the worst-case bound

$$
\frac{\left\|e_{n-1}^{w}\right\|_{A}}{\left\|e_{0}^{w}\right\|_{A}}=\left(\sum_{j=1}^{n}\left|l_{j}\right|\right)^{-1} \approx \frac{2 \nu^{n-1}}{1+\nu^{2}+\cdots+\nu^{2(n-1)}+\nu^{2 n}}
$$

where

$$
\nu \equiv \frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}, \quad \kappa=\frac{\lambda_{\max }}{\lambda_{\min }}
$$

The classical κ-bound is given by

$$
\frac{\left\|e_{n-1}^{w}\right\|_{A}}{\left\|e_{0}^{w}\right\|_{A}} \leq 2 \nu^{n-1} .
$$

Model problem: Poisson equation

$$
-u^{\prime \prime}(z)=f(z), \quad z \in(0,1), \quad u(0)=u_{0}, \quad u(1)=u_{1}
$$

The central finite difference approximation on the uniform grid $k h$, $k=1, \ldots, n, h=1 /(n+1)$, leads to a system $\mathbf{A} x=b$

The eigenvalues λ_{k} and the eigenvectors q_{k} of \mathbf{A} are known,

$$
\lambda_{k}=4 \sin ^{2}\left(\frac{k \pi h}{2}\right) \Rightarrow l_{j}=2 \cos ^{2}\left(\frac{j \pi h}{2}\right)
$$

Various right hand sides

Formulas for the next-to-last step

$$
\left\|r_{n-1}\right\|=\left(\sum_{j=1}^{n}\left|\frac{l_{j}}{\varrho_{j}}\right|^{2}\right)^{-1 / 2}, \quad\left\|e_{n-1}\right\|_{\mathbf{A}}=\left(\sum_{j=1}^{n}\left|\frac{\lambda_{j}^{1 / 2} l_{j}}{\varrho_{j}}\right|^{2}\right)^{-1 / 2} .
$$

We consider two types of right hand sides:

- worst-case b 's: right hand sides leading to maximal relative convergence quantities in the next-to-last step $\rightarrow b_{M R}^{w}, b_{C G}^{w}$.
- unbiased $b \rightarrow b^{u}$, all ϱ_{j} are of equal size.

Some results for MR

$$
\text { Let }\left\|b_{M R}^{w}\right\|=\left\|b^{u}\right\|=1 \text {. }
$$

Worst-case \times unbiased case (MR)

$$
\left\|r_{n-1}^{w}\right\|=\frac{1}{n}, \quad\left\|r_{n-1}^{u}\right\|>\sqrt{\frac{2}{3}} \frac{1}{n} .
$$

Some results for MR

Let $\left\|b_{M R}^{w}\right\|=\left\|b^{u}\right\|=1$.
[Liesen \& T. '05]
Worst-case \times unbiased case (MR)

$$
\left\|r_{n-1}^{w}\right\|=\frac{1}{n}, \quad\left\|r_{n-1}^{u}\right\|>\sqrt{\frac{2}{3}} \frac{1}{n}
$$

Exact convergence curve [idee by Naiman \& Babuška \& Elman '97]

$$
\left\|r_{i}\right\|=\left[\frac{n-i}{n(i+1)}\right]^{1 / 2} \quad \operatorname{MR}\left(\mathbf{A}, b_{M R}^{w}\right)
$$

Some results for MR

Let $\left\|b_{M R}^{w}\right\|=\left\|b^{u}\right\|=1$.
Worst-case \times unbiased case (MR)

$$
\left\|r_{n-1}^{w}\right\|=\frac{1}{n}, \quad\left\|r_{n-1}^{u}\right\|>\sqrt{\frac{2}{3}} \frac{1}{n}
$$

Exact convergence curve

$$
\left\|r_{i}\right\|=\left[\frac{n-i}{n(i+1)}\right]^{1 / 2} \quad \operatorname{MR}\left(\mathbf{A}, b_{M R}^{w}\right)
$$

Worst data for MR

$$
u(0)=0, u(1)=0, f(z) \approx \cot \left(\frac{\pi z}{2}\right)
$$

yield a worst right-hand side for MR.

Worst data for CG

We are able to determine worst ϱ^{w}, corresponding $b^{w}=\mathbf{Q} \varrho^{w}$.

$$
\left.\begin{array}{c}
\text { worst } \varrho \\
{\left[\begin{array}{c}
\sin (\pi h) \\
\vdots \\
\sin (n \pi h)
\end{array}\right]}
\end{array} b_{C G}^{w} \quad \begin{array}{c}
\text { data for diff. eq. } \\
\vdots \\
0
\end{array}\right] \begin{gathered}
1 \\
0 \\
\vdots \\
\\
u(0)=1 \\
u(1)=0
\end{gathered}
$$

CG started with $x_{0}=0$ and $b_{C G}^{w}$ attains the worst-case relative A-norm of the error in the $(n-1)$ st iteration step.

Worst data for CG

We are able to determine worst ϱ^{w}, corresponding $b^{w}=\mathbf{Q} \varrho^{w}$.

$$
\begin{gathered}
\text { worst } \varrho \\
{\left[\begin{array}{c}
\sin (\pi h) \\
\vdots \\
\sin (n \pi h)
\end{array}\right]}
\end{gathered} b_{C G}^{w} \quad \begin{gathered}
\text { data for diff. eq. } \\
{\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right]}
\end{gathered} \quad \begin{aligned}
& f(z)=0 \\
& u(0)=1, \\
& u(1)=0 .
\end{aligned}
$$

CG started with $x_{0}=0$ and $b_{C G}^{w}$ attains the worst-case relative A-norm of the error in the $(n-1)$ st iteration step.

Another example: Let n be even.

$$
u^{\prime \prime}(z)=0, u(0)=1, u(1)=1 \quad \Longrightarrow \quad b=[1,0, \ldots, 0,1]^{T} .
$$

Then $\left\|x-x_{n / 2}\right\|_{A} /\|x\|_{A}$ is the worst possible one and CG finds the solution in the following step.
[Liesen \& T. '05]

Numerical experiment

Conclusions

- Our results for normal matrices:
\rightarrow allow to study model problems with known eigenvalues,
\rightarrow can be formulated for CG and MR.

Conclusions

- Our results for normal matrices:
\rightarrow allow to study model problems with known eigenvalues,
\rightarrow can be formulated for CG and MR.
[Liesen \& T. '05]
- The next-to-last step of CG and MR is completely understood!
- We can compare true convergence quantities with convergence bounds.
- For 1-D Poison equation we obtained interesting results:
\rightarrow particular worst-case quantities in the next-to-last step,
\rightarrow implications for the connection between the differential equation and the linear solver for the discretized problem,
\rightarrow exact convergence curves for particular right-hand sides.

Thank you for your attention!

Thank you for your attention!

More details can be found in

Liesen, J. and Tichý, P., The worst-case GMRES for normal matrices, BIT Numerical Mathematics, Volume 44, pp. 79-98, 2004.

Liesen, J. and Tichý, P., On the next-to-last CG and MR iteration step, submitted to ETNA, January 2005.

See also http://www.math.tu-berlin.de/~tichy

