On ideal GMRES for a Jordan Block

Petr Tichý ${ }^{\dagger *}$
joint work with

Jörg Liesen*

${ }^{\dagger}$ Institute of Computer Science AS CR,
*Technical University of Berlin

February 7-11, 2005. Seminar on Numerical Analysis (SNA), Ostrava, Czech Republic

A system of linear algebraic equations

Consider a system of linear algebraic equations

$$
\mathbf{A} x=b
$$

$\mathbf{A} \in \mathbb{R}^{n \times n}$ is nonsingular, $b \in \mathbb{R}^{n}$.

- How to construct an approximation to the solution?

A system of linear algebraic equations

Consider a system of linear algebraic equations

$$
\mathbf{A} x=b
$$

$\mathbf{A} \in \mathbb{R}^{n \times n}$ is nonsingular, $b \in \mathbb{R}^{n}$.

- How to construct an approximation to the solution?

Projection methods \longmapsto Given x_{0}. Find an approximation x_{i},

$$
x_{i} \in x_{0}+\mathcal{S}_{i} \quad \text { such that } \quad r_{i} \perp \mathcal{C}_{i}
$$

where $r_{i}=b-\mathbf{A} x_{i}$.

GMRES - a Krylov subspace method

Krylov subspace methods $\longmapsto \mathcal{S}_{i} \equiv \mathcal{K}_{i}\left(\mathbf{A}, r_{0}\right) \equiv \operatorname{span}\left\{r_{0}, \cdots, \mathbf{A}^{i-1} r_{0}\right\}$.

Given $x_{0} \in \mathbb{R}^{n}, r_{0}=b-\mathbf{A} x_{0}$. GMRES computes iterates x_{i} such that

$$
x_{i} \in x_{0}+\underbrace{\mathcal{K}_{i}\left(\mathbf{A}, r_{0}\right)}_{\mathcal{S}_{i}} \text { and } r_{i} \perp \underbrace{\mathbf{A} \mathcal{K}_{i}\left(\mathbf{A}, r_{0}\right)}_{\mathcal{C}_{i}}
$$

GMRES - a Krylov subspace method

Krylov subspace methods $\longmapsto \mathcal{S}_{i} \equiv \mathcal{K}_{i}\left(\mathbf{A}, r_{0}\right) \equiv \operatorname{span}\left\{r_{0}, \cdots, \mathbf{A}^{i-1} r_{0}\right\}$.

Given $x_{0} \in \mathbb{R}^{n}, r_{0}=b-\mathbf{A} x_{0}$. GMRES computes iterates x_{i} such that

$$
\begin{aligned}
& x_{i} \in x_{0}+\underbrace{\mathcal{K}_{i}\left(\mathbf{A}, r_{0}\right)}_{\mathcal{S}_{i}} \text { and } r_{i} \perp \underbrace{\mathbf{A} \mathcal{K}_{i}\left(\mathbf{A}, r_{0}\right)}_{\mathcal{C}_{i}} \\
& r_{i}=b-\mathbf{A} x_{i} \\
& r_{i} \in r_{0}+\mathbf{A} \mathcal{C}_{i}\left(\mathbf{A}, r_{0}\right)
\end{aligned}
$$

GMRES - a Krylov subspace method

Krylov subspace methods $\longmapsto \mathcal{S}_{i} \equiv \mathcal{K}_{i}\left(\mathbf{A}, r_{0}\right) \equiv \operatorname{span}\left\{r_{0}, \cdots, \mathbf{A}^{i-1} r_{0}\right\}$.

Given $x_{0} \in \mathbb{R}^{n}, r_{0}=b-\mathbf{A} x_{0}$. GMRES computes iterates x_{i} such that

where $\pi_{i} \equiv\{p$ is a polynomial; $\operatorname{deg}(p) \leq i ; p(0)=1\}$.

The GMRES problem

GMRES constructs approximations $x_{i} \in x_{0}+\mathcal{K}_{i}\left(\mathbf{A}, r_{0}\right)$ to the solution x of the system $\mathbf{A} x=b$ such that

$$
\left\|r_{i}\right\|=\min _{p \in \pi_{i}}\left\|p(\mathbf{A}) r_{0}\right\|
$$

- Our aim:

Description and understanding of this minimization process.

The GMRES problem

GMRES constructs approximations $x_{i} \in x_{0}+\mathcal{K}_{i}\left(\mathbf{A}, r_{0}\right)$ to the solution x of the system $\mathbf{A} x=b$ such that

$$
\left\|r_{i}\right\|=\min _{p \in \pi_{i}}\left\|p(\mathbf{A}) r_{0}\right\| .
$$

- Our aim:

Description and understanding of this minimization process.

- Considered classes of matrices in this talk:

Normal matrices and Jordan blocks.

- For simplicity:

Let $x_{0}=0$, i.e. $r_{0}=b-A x_{0}=b$ and let $\|b\|=1$.

Outline

1. Introduction
2. Bounds and Questions
3. GMRES for normal matrices
4. GMRES for nonnormal matrices
5. GMRES for a Jordan block
6. Polynomial numerical hull for a Jordan block
7. Conclusions

Bounds and Questions

For simplicity assume $x_{0}=0$ and $\|b\|=1$. Then

$$
\left\|r_{i}\right\|=\min _{p \in \pi_{i}}\|p(\mathbf{A}) b\|
$$

(GMRES)

Bounds and Questions

For simplicity assume $x_{0}=0$ and $\|b\|=1$. Then

$$
\begin{aligned}
\left\|r_{i}\right\| & =\min _{p \in \pi_{i}}\|p(\mathbf{A}) b\| & & \text { (GMRES) } \\
& \leq \max _{\|b\|=1} \min _{p \in \pi_{i}}\|p(\mathbf{A}) b\| & & \text { (worst-case GMRES) }
\end{aligned}
$$

Bounds and Questions

For simplicity assume $x_{0}=0$ and $\|b\|=1$. Then

$$
\begin{aligned}
\left\|r_{i}\right\| & =\min _{p \in \pi_{i}}\|p(\mathbf{A}) b\| & & \text { (GMRES) } \\
& \leq \max _{\|b\|=1} \min _{p \in \pi_{i}}\|p(\mathbf{A}) b\| & & \text { (worst-case GMRES) } \\
& \leq \min _{p \in \pi_{i}}\|p(\mathbf{A})\| & & \text { (ideal GMRES). }
\end{aligned}
$$

Bounds and Questions

For simplicity assume $x_{0}=0$ and $\|b\|=1$. Then

$$
\begin{aligned}
\left\|r_{i}\right\| & =\min _{p \in \pi_{i}}\|p(\mathbf{A}) b\| & & \text { (GMRES) } \\
& \leq \max _{\|b\|=1} \min _{p \in \pi_{i}}\|p(\mathbf{A}) b\| & & \text { (worst-case GMRES) } \\
& \leq \min _{p \in \pi_{i}}\|p(\mathbf{A})\| & & \text { (ideal GMRES). }
\end{aligned}
$$

Our questions:

- When ideal GMRES = worst-case GMRES?
- How to evaluate or estimate the ideal GMRES bound?
- Which b yields the worst-case residual norm?
- Relevance of the bound?

GMRES for normal matrices

Let A be nonsingular and normal,

$$
\mathbf{A}=\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{H}, \quad \mathbf{Q}^{H} \mathbf{Q}=\mathbf{I}, \quad \boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) .
$$

Then
worst-case GMRES = ideal GMRES.
[Greenbaum \& Gurvits '94, Joubert '94]

GMRES for normal matrices

Let A be nonsingular and normal,

$$
\mathbf{A}=\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{H}, \quad \mathbf{Q}^{H} \mathbf{Q}=\mathbf{I}, \quad \boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) .
$$

Then
worst-case GMRES = ideal GMRES.
[Greenbaum \& Gurvits '94, Joubert '94]
Moreover

$$
\min _{p \in \pi_{i}}\|p(\mathbf{A})\|=\min _{p \in \pi_{i}} \max _{\lambda_{j} \in L}\left|p\left(\lambda_{j}\right)\right|
$$

where $L \equiv\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$.

Evaluation of the bound (A normal)

Conjecture: There exists a subset of $i+1$ (distinct) eigenvalues $\left\{\mu_{1}, \ldots, \mu_{i+1}\right\} \subseteq\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ such that

$$
\begin{equation*}
\min _{p \in \pi_{n}} \max _{\lambda_{j} \in L}\left|p\left(\lambda_{j}\right)\right| \approx\left(\sum_{j=1}^{i+1} \prod_{\substack{k=1 \\ k \neq j}}^{i+1} \frac{\left|\mu_{k}\right|}{\left|\mu_{k}-\mu_{j}\right|}\right)^{-1} \tag{1}
\end{equation*}
$$

- real eigenvalues :
[Liesen \& T. '04, Greenbaum '79]
(1) is equality (proved),
- complex eigenvalues :
(1) is equality up to a factor between 1 and $\frac{4}{\pi}$ (conjecture).

Nonnormal matrices A

What is the GMRES behavior for nonnormal matrices?

$$
\begin{aligned}
\left\|r_{i}\right\| & =\min _{p \in \pi_{i}}\|p(\mathbf{A}) b\| & & \text { (GMRES) } \\
& \leq \max _{\|b\|=1} \min _{p \in \pi_{i}}\|p(\mathbf{A}) b\| & & \text { (worst-case GMRES) } \\
& \leq \min _{p \in \pi_{i}}\|p(\mathbf{A})\| & & \text { (ideal GMRES). }
\end{aligned}
$$

- Eigenvalues may have nothing to do with the convergence behavior.

> [Arioli, Greenbaum, Pták, Strakoš 1992-2000]

- Worst-case GMRES can be very different from ideal GMRES.
[Faber \& Joubert \& Knill \& Manteuffel '96, Toh '97]

Toh's example

Worst-case GMRES can be very different from ideal GMRES for nonnormal A !
Consider the 4 by 4 matrix

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & \epsilon & & \\
& -1 & \epsilon^{-1} & \\
& & 1 & \epsilon \\
& & & -1
\end{array}\right], \quad \epsilon>0
$$

Then, for $i=3$,

$$
\frac{\max _{\|b\|=1} \min _{p \in \pi_{i}}\|p(\mathbf{A}) b\|}{\min _{p \in \pi_{i}}\|p(\mathbf{A})\|} \rightarrow 0 \quad \text { as } \quad \epsilon \rightarrow 0
$$

Toh's matrix

$$
\mathbf{A}=\mathbf{V} \mathbf{J} \mathbf{V}^{-1}
$$

where

$$
\mathbf{J}=\left[\begin{array}{cccc}
1 & 1 & & \\
& 1 & & \\
& & -1 & 1 \\
& & & -1
\end{array}\right], \quad \mathbf{V}=\frac{1}{4}\left[\begin{array}{cccc}
\epsilon & \epsilon & \epsilon & -\epsilon \\
-2 & -1 & 0 & 1 \\
0 & -2 \epsilon & 0 & 2 \epsilon \\
0 & 4 & 0 & 0
\end{array}\right]
$$

and

$$
\kappa(\mathbf{V}) \sim \frac{4}{\epsilon}
$$

GMRES for a Jordan block

Let $\lambda>0$. Consider an n by n Jordan block

$$
\mathbf{J}_{\lambda}=\left[\begin{array}{cccc}
\lambda & 1 & & \\
& \ddots & \ddots & \\
& & \ddots & 1 \\
& & & \lambda
\end{array}\right] \in \mathbb{R}^{n \times n}
$$

What is the situation for a Jordan block? Does it hold
worst-case GMRES = ideal GMRES?

How to describe ideal GMRES convergence?

Known result

Known result: Let \mathbf{A} be n by n triangular Toeplitz matrix. Then

$$
\max _{\|b\|=1} \min _{p \in \pi_{i}}\|p(\mathbf{A}) b\|=1 \Longleftrightarrow \min _{p \in \pi_{i}}\|p(\mathbf{A})\|=1
$$

[Faber \& Joubert \& Knill \& Manteuffel '96]
What is the situation if $\min _{p \in \pi_{i}}\|p(\mathbf{A})\|<1$?

Known result

Known result: Let \mathbf{A} be n by n triangular Toeplitz matrix. Then

$$
\max _{\|b\|=1} \min _{p \in \pi_{i}}\|p(\mathbf{A}) b\|=1 \Longleftrightarrow \min _{p \in \pi_{i}}\|p(\mathbf{A})\|=1
$$

[Faber \& Joubert \& Knill \& Manteuffel '96]
What is the situation if $\min _{p \in \pi_{i}}\|p(\mathbf{A})\|<1$?
Definition: The polynomial $\varphi_{i} \in \pi_{i}$ is called the i th ideal GMRES polynomial of $\mathbf{A} \in \mathbb{R}^{n \times n}$, if it satisfies

$$
\begin{gathered}
\qquad\left\|\varphi_{i}(\mathbf{A})\right\|=\min _{p \in \pi_{i}}\|p(\mathbf{A})\| \\
\text { [Existence and uniqueness of } \varphi_{i} \rightarrow \text { Greenbaum \& Trefethen '94] }
\end{gathered}
$$

We call the matrix $\varphi_{i}(\mathbf{A})$ the i th ideal GMRES matrix.

Numerical Experiment

The MATLAB-software SDPT3 by Toh \rightarrow we can compute ideal GMRES matrices!
Let $\mathbf{A}=\mathbf{J}_{1} \in \mathbb{R}^{8 \times 8}$. We display the structure of $\varphi_{i}\left(\mathbf{J}_{1}\right)$.

- ... nonzero entries, ○ . . zero entries (or almost)

Numerical Experiment

The MATLAB-software SDPT3 by Toh \rightarrow we can compute ideal GMRES matrices!
Let $\mathbf{A}=\mathbf{J}_{1} \in \mathbb{R}^{8 \times 8}$. We display the structure of $\varphi_{i}\left(\mathbf{J}_{1}\right)$.

- ... nonzero entries, ○ . . zero entries (or almost)

Numerical Experiment

The MATLAB-software SDPT3 by Toh \rightarrow we can compute ideal GMRES matrices!
Let $\mathbf{A}=\mathbf{J}_{1} \in \mathbb{R}^{8 \times 8}$. We display the structure of $\varphi_{i}\left(\mathbf{J}_{1}\right)$.

- ... nonzero entries, ○ . . zero entries (or almost)

Numerical Experiment

The MATLAB-software SDPT3 by Toh \rightarrow we can compute ideal GMRES matrices!
Let $\mathbf{A}=\mathbf{J}_{1} \in \mathbb{R}^{8 \times 8}$. We display the structure of $\varphi_{i}\left(\mathbf{J}_{1}\right)$.

- ... nonzero entries, ○ . . zero entries (or almost)

Numerical Experiment

The MATLAB-software SDPT3 by Toh \rightarrow we can compute ideal GMRES matrices!
Let $\mathbf{A}=\mathbf{J}_{1} \in \mathbb{R}^{8 \times 8}$. We display the structure of $\varphi_{i}\left(\mathbf{J}_{1}\right)$.

- ... nonzero entries, ○ . . zero entries (or almost)

Numerical Experiment

The MATLAB-software SDPT3 by Toh \rightarrow we can compute ideal GMRES matrices!
Let $\mathbf{A}=\mathbf{J}_{1} \in \mathbb{R}^{8 \times 8}$. We display the structure of $\varphi_{i}\left(\mathbf{J}_{1}\right)$.

- ... nonzero entries, ○ . . zero entries (or almost)

Numerical Experiment

The MATLAB-software SDPT3 by Toh \rightarrow we can compute ideal GMRES matrices!
Let $\mathbf{A}=\mathbf{J}_{1} \in \mathbb{R}^{8 \times 8}$. We display the structure of $\varphi_{i}\left(\mathbf{J}_{1}\right)$.

- ... nonzero entries, ○ . . zero entries (or almost)

Numerical Experiment

The MATLAB-software SDPT3 by Toh \rightarrow we can compute ideal GMRES matrices!
Let $\mathbf{A}=\mathbf{J}_{1} \in \mathbb{R}^{8 \times 8}$. We display the structure of $\varphi_{i}\left(\mathbf{J}_{1}\right)$.

- ... nonzero entries, ○ . . zero entries (or almost)

Structure behind ideal GMRES convergence

There is a structure behind the ideal GMRES convergence.
The structure of $\varphi_{i}\left(J_{1}\right)$ depends on relation between i and n.
E.g. if i divides $n, m \equiv n / i$, then $\varphi_{i}\left(\mathbf{J}_{1}\right)=$

(in general, the greatest common divisor of i and n plays an important role)

Structure behind ideal GMRES convergence

There is a structure behind the ideal GMRES convergence.
The structure of $\varphi_{i}\left(J_{1}\right)$ depends on relation between i and n.
E.g. if i divides $n, m \equiv n / i$,

(in general, the greatest common divisor of i and n plays an important role)

Structure behind ideal GMRES convergence

There is a structure behind the ideal GMRES convergence.
The structure of $\varphi_{i}\left(J_{1}\right)$ depends on relation between i and n.
E.g. if i divides $n, m \equiv n / i$,

(in general, the greatest common divisor of i and n plays an important role)

Lemma

From [Greenbaum \& Gurvits '94] it follows:
Lemma: Let $A \in \mathbb{R}^{n \times n}$. The following statements are equivalent:

1. The i th worst-case GMRES approximation $=$ the i th ideal GMRES approx.
2. There exists a unit norm vector b and a polynomial $\psi \in \pi_{i}$, such that

$$
\psi(\mathbf{A}) b \perp \mathbf{A} \mathcal{K}_{i}(\mathbf{A}, b)
$$

and b lies in the span of right singular vectors of $\psi(A)$ corresponding to its maximal singular value.

In addition, if 2. holds, then $\psi=\varphi_{i}$.

Lemma

From [Greenbaum \& Gurvits '94] it follows:
Lemma: Let $A \in \mathbb{R}^{n \times n}$. The following statements are equivalent:

1. The i th worst-case GMRES approximation $=$ the i th ideal GMRES approx.
2. There exists a unit norm vector b and a polynomial $\psi \in \pi_{i}$, such that

$$
\psi(\mathbf{A}) b \perp \mathbf{A} \mathcal{K}_{i}(\mathbf{A}, b)
$$

and b lies in the span of right singular vectors of $\psi(A)$ corresponding to its maximal singular value.

In addition, if 2. holds, then $\psi=\varphi_{i}$.
Using the orthogonal transformation and this lemma we proved: If i divides n then
ideal GMRES = worst-case GMRES
for a Jordan block \mathbf{J}_{λ}.
[T. \& Liesen '05]

In more details

We proved: There is a strong connection between
the i th step of ideal GMRES
for $\mathrm{J}_{\lambda} \in \mathbb{R}^{n \times n}$
the 1st step of ideal GMRES
for $\mathrm{J}_{\lambda^{i}} \in \mathbb{R}^{m \times m}$
where $m=n / i$. Let e.g. n is even, $i=n / 2, m=2$.

Interesting details (i divides n)

Ideal polynomial φ_{i} :

$$
\varphi_{i}(z)=\bullet+\bullet(\lambda-z)^{i}
$$

Interesting details (i divides n)

Ideal polynomial φ_{i} :

$$
\varphi_{i}(z)=\bullet+\bullet(\lambda-z)^{i}
$$

Let $\lambda=1$. Based on numerical experiments we know that

$$
\varphi_{i}(z)=\frac{m}{2 m+1}+\frac{m+1}{2 m+1}(1-z)^{i}
$$

where $m=n / i$, but we were unable to determine $\left\|\varphi_{i}\left(\mathbf{J}_{1}\right)\right\|$.

Interesting details (i divides n)

Ideal polynomial φ_{i} :

$$
\varphi_{i}(z)=\bullet+\bullet(\lambda-z)^{i}
$$

Let $\lambda=1$. Based on numerical experiments we know that

$$
\varphi_{i}(z)=\frac{m}{2 m+1}+\frac{m+1}{2 m+1}(1-z)^{i}
$$

where $m=n / i$, but we were unable to determine $\left\|\varphi_{i}\left(\mathbf{J}_{1}\right)\right\|$.
Let e.g. n be even, $i=n / 2$, and let $\lambda^{i} \geq \frac{1}{2}$. Then

$$
\left\|\varphi_{i}\left(\mathbf{J}_{\lambda}\right)\right\|=\frac{4 \lambda^{i}}{4 \lambda^{2 i}+1}
$$

Estimating the ideal GMRES approximation

How to estimate the ideal GMRES approximation $\min _{p \in \pi_{i}}\|p(\mathbf{A})\|$?
We try to determine sets $\Omega \subset \mathbb{C}$ that are somehow associated with \mathbf{A}, and satisfy

$$
\min _{p \in \pi_{i}}\|p(\mathbf{A})\| \sim \min _{p \in \pi_{i}} \max _{z \in \Omega}|p(z)| .
$$

Estimating the ideal GMRES approximation

How to estimate the ideal GMRES approximation $\min _{p \in \pi_{i}}\|p(\mathbf{A})\|$?
We try to determine sets $\Omega \subset \mathbb{C}$ that are somehow associated with \mathbf{A}, and satisfy

$$
\min _{p \in \pi_{i}}\|p(\mathbf{A})\| \sim \min _{p \in \pi_{i}} \max _{z \in \Omega}|p(z)| .
$$

- If \mathbf{A} is normal then $\Omega=L$.
- If \mathbf{A} is nonnormal then there are several possibilities how to choose Ω, e.g.
* ε-pseudospectrum of \mathbf{A},
* polynomial numerical hull of \mathbf{A}.
[Nevanlinna, Greenbaum]

Polynomial numerical hull

Definition: Let A be n by n matrix. Polynomial numerical hull of degree i is a sets \mathcal{H}_{i} in the complex plane defined as

$$
\mathcal{H}_{i} \equiv\left\{z \in \mathbb{C}:\|p(\mathbf{A})\| \geq|p(z)| \forall p \in \mathcal{P}_{i}\right\}
$$

where \mathcal{P}_{i} denotes the set of polynomials of degree i or less.

Polynomial numerical hull

Definition: Let \mathbf{A} be n by n matrix. Polynomial numerical hull of degree i is a sets \mathcal{H}_{i} in the complex plane defined as

$$
\mathcal{H}_{i} \equiv\left\{z \in \mathbb{C}:\|p(\mathbf{A})\| \geq|p(z)| \forall p \in \mathcal{P}_{i}\right\}
$$

where \mathcal{P}_{i} denotes the set of polynomials of degree i or less.
The set \mathcal{H}_{i} provides a lower bound on the ideal GMRES approximation

$$
\min _{p \in \pi_{i}}\|p(\mathbf{A})\| \geq \min _{p \in \pi_{i}} \max _{z \in \mathcal{H}_{i}}|p(z)| .
$$

How do these sets look like for a given class of nonnormal matrices?
[papers by Greenbaum et al. 2000-2004]

\mathcal{H}_{i} for a Jordan block \mathbf{J}_{λ}

\mathcal{H}_{i} is a circle around λ with a radius $r_{i, n}$.
$r_{1, n}$ and $r_{n-1, n}$ are known,
[Faber \& Greenbaum \& Marshall '03]

\mathcal{H}_{i} for a Jordan block \mathbf{J}_{λ}

\mathcal{H}_{i} is a circle around λ with a radius $r_{i, n}$.
$r_{1, n}$ and $r_{n-1, n}$ are known,
[Faber \& Greenbaum \& Marshall '03]

$$
r_{1, n}=\cos \left(\frac{\pi}{n+1}\right)
$$

\mathcal{H}_{i} for a Jordan block \mathbf{J}_{λ}

\mathcal{H}_{i} is a circle around λ with a radius $r_{i, n}$.
$r_{1, n}$ and $r_{n-1, n}$ are known,
[Faber \& Greenbaum \& Marshall '03]

$$
r_{1, n}=\cos \left(\frac{\pi}{n+1}\right)
$$

if n even, $r_{n-1, n}$ is the positive root of

$$
\begin{aligned}
2 r^{n}+r-1 & =0 \\
r_{n-1, n} & \geq 1-\frac{\log (2 n)}{n}
\end{aligned}
$$

\mathcal{H}_{i} for a Jordan block $\mathbf{J}_{\lambda}(i$ divides $n)$

We proved a connection between

- the i th step of ideal GMRES for $\mathbf{J}_{\lambda} \in \mathbb{R}^{n \times n}$ and
- the 1th step of ideal GMRES for $\mathbf{J}_{\lambda^{i}} \in \mathbb{R}^{m \times m}, m=n / i$.

From this connection it follows

$$
r_{i, n}=\left[\cos \left(\frac{\pi}{m+1}\right)\right]^{1 / i}
$$

\mathcal{H}_{i} for a Jordan block $\mathbf{J}_{\lambda}(i$ divides $n)$

We proved a connection between

- the i th step of ideal GMRES for $\mathbf{J}_{\lambda} \in \mathbb{R}^{n \times n}$ and
- the 1th step of ideal GMRES for $\mathbf{J}_{\lambda^{i}} \in \mathbb{R}^{m \times m}, m=n / i$.

From this connection it follows

$$
r_{i, n}=\left[\cos \left(\frac{\pi}{m+1}\right)\right]^{1 / i}
$$

and the bound

$$
\lambda^{-i} \cos \left(\frac{\pi}{m+1}\right) \leq \min _{p \in \pi_{i}}\left\|p\left(\mathrm{~J}_{\lambda}\right)\right\| \leq \lambda^{-i},
$$

for $\lambda \geq r_{i, n}$.

General step i (observation), $n=9, i=6$

Let d be the greatest common divisor of n and $i, n_{d}=n / d, i_{d}=i / d$.

$\varphi_{i}\left(\mathbf{J}_{\lambda}\right)$

General step i (observation), $n=9, i=6$

Let d be the greatest common divisor of n and $i, n_{d}=n / d, i_{d}=i / d$.

$$
\varphi_{i}\left(\mathbf{J}_{\lambda}\right)
$$

General step i (observation), $n=9, i=6$

Let d be the greatest common divisor of n and $i, n_{d}=n / d, i_{d}=i / d$.

General step i (observation), $n=9, i=6$

Let d be the greatest common divisor of n and $i, n_{d}=n / d, i_{d}=i / d$.
Two observations (based on numerical experiments):
A. There is a strong connection between:
the i th step of ideal GMRES \longleftrightarrow the i_{d} st step of ideal GMRES for $\mathrm{J}_{\lambda} \in \mathbb{R}^{n \times n}$

$$
\text { for } \mathbf{J}_{\lambda^{d}} \in \mathbb{R}^{n_{d} \times n_{d}}
$$

B. If i and n are relative primes then $\varphi_{i}\left(\mathbf{J}_{\lambda}\right)$ has a simple maximal singular value.

General step i (observation), $n=9, i=6$

Let d be the greatest common divisor of n and $i, n_{d}=n / d, i_{d}=i / d$.
Two observations (based on numerical experiments):
A. There is a strong connection between:
the i th step of ideal GMRES \longleftrightarrow the i_{d} st step of ideal GMRES for $\mathrm{J}_{\lambda} \in \mathbb{R}^{n \times n}$

$$
\text { for } \mathbf{J}_{\lambda^{d}} \in \mathbb{R}^{n_{d} \times n_{d}}
$$

B. If i and n are relative primes then $\varphi_{i}\left(\mathbf{J}_{\lambda}\right)$ has a simple maximal singular value.
if \mathbf{A}. and \mathbf{B}. hold then
worst-case GMRES $=$ ideal GMRES for \mathbf{J}_{λ} in each step i.

Conclusions for a Jordan block

Let i divide n. In these steps i :

- we proved worst-case GMRES = ideal GMRES,
- we determined the ideal GMRES polynomial,
- we know the radius of polynomial numerical hull,
- we derived tight bounds on $\left\|\varphi_{i}\left(\mathbf{J}_{\lambda}\right)\right\|$.

Conclusions for a Jordan block

Let i divide n. In these steps i :

- we proved worst-case GMRES = ideal GMRES,
- we determined the ideal GMRES polynomial,
- we know the radius of polynomial numerical hull,
- we derived tight bounds on $\left\|\varphi_{i}\left(\mathbf{J}_{\lambda}\right)\right\|$.

General step i :
Our numerical experiments predict:

$$
\text { worst-case GMRES }=\text { ideal GMRES for } \mathbf{J}_{\lambda} \text { in each step } i .
$$

Which approximation problem solves ideal GMRES for \mathbf{J}_{λ} ?

Thank you for your attention!

