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/%’@/ A system of linear algebraic equations

/

Consider a system of linear algebraic equations

Ax =0

A € R™ ™ is nonsingular, b € R".

® How to construct an approximation to the solution?

P. Tichy and J. Liesen



/%’@/ A system of linear algebraic equations

/

Consider a system of linear algebraic equations

Ax =0

A € R™ ™ is nonsingular, b € R".

® How to construct an approximation to the solution?

Projection methods — Given . Find an approximation z;,

T; € To+ Sz such that T; CZ',

where r; = b — Ax;.

P. Tichy and J. Liesen



4’6/ GMRES - a Krylov subspace method

/

Krylov subspace methods — S; = KC;(A,rg) = span {rg, -, A" 1rg}.

Given zo € R", ro = b — Axy. GMRES computes iterates x; such that

x; € CC()—|—ICZ'(A,7“0) and r; L A]Ci(A,T‘O).

_J J/

N

S; C
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Given zo € R", ro = b — Axy. GMRES computes iterates x; such that

J/

x; € CC()—|—ICZ'(A,7“0) and r; L A/Ci(A,T‘O).

N

A S, C.
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4’6/ GMRES - a Krylov subspace method

/

Krylov subspace methods — S; = K;(A,rg) = span {rg,---, A" rg}.

Given zo € R", ro = b — Axy. GMRES computes iterates x; such that

x; € CC()—|—ICZ'(A,7“0) and r; L A/Ci(A,T‘O).

A S, A
Ti:b—ACIfZ‘
Y Y
ri € 1o+ AKi(A, 7o) Irill = min |[p(A) 7ol

where m; = { pis a polynomial; deg(p) < i; p(0) =1}.
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/%’@/ The GMRES problem

/

GMRES constructs approximations x; € xo + K;(A,rg) to the solution x
of the system Ax = b such that

|73 = min [lp(A)roll.

pET;

e Our aim:

Description and understanding of this minimization process.



/%’@/ The GMRES problem

/

GMRES constructs approximations x; € xo + K;(A,rg) to the solution x
of the system Ax = b such that

|73 = min [lp(A)roll.

pET;

e Our aim:

Description and understanding of this minimization process.

e Considered classes of matrices in this talk:

Normal matrices and Jordan blocks.

e For simplicity:
Let xg =0,i.e. 1o =b— Azg =band let ||b|| = 1.
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/%’6/ Outline

/

1. Introduction

2. Bounds and Questions

3. GMRES for normal matrices

4. GMRES for nonnormal matrices

5. GMRES for a Jordan block

6. Polynomial numerical hull for a Jordan block

7. Conclusions



/%’@/ Bounds and Questions

For simplicity assume xy = 0 and ||b|| = 1. Then

lrill = min [|p(A)b]] (GMRES)
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Irill = min [lp(A)®] (GMRES)
< max min [|[p(A)b|| (worst-case GMRES)
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4’6/ Bounds and Questions

For simplicity assume xy = 0 and ||b|| = 1. Then

Irill = min [lp(A)®] (GMRES)
< max min [|[p(A)b|| (worst-case GMRES)

lb=1pem;

VAN

min |[p(A)]] (ideal GMRES).

pem;
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4’6/ Bounds and Questions

/

For simplicity assume xy = 0 and ||b|| = 1. Then

Irill = min [p(A)b| (GMRES)
< ||Il£l||aX1 n’elin |p(A)b| (worst-case GMRES)
=1 pcT;
< Héin lp(A)| (ideal GMRES).
pcT;

Our questions:

® When ideal GMRBES = worst-case GMRES?

® How to evaluate or estimate the ideal GMRES bound?

o Which b yields the worst-case residual norm?

o Relevance of the bound?

P. Tichy and J. Liesen



4’6/ GMRES for normal matrices

/

Let A be nonsingular and normal,
A = QAQY, QQ=1 A =diag(\i,...,\,).

Then
worst-case GMRES = ideal GMRES.

[Greenbaum & Gurvits ‘94, Joubert '94]

P. Tichy and J. Liesen



4’6/ GMRES for normal matrices

/

Let A be nonsingular and normal,
A = QAQY, QQ=1 A =diag(\i,...,\,).

Then
worst-case GMRES = ideal GMRES.

[Greenbaum & Gurvits ‘94, Joubert '94]

Moreover
in [p(A)| = mi -
min [[p(A)} = minmax p(A;)

where L = {\1,..., \,}.

P. Tichy and J. Liesen



/%’@/ Evaluation of the bound (A normal)

/

Conjecture: There exists a subset of 7 + 1 (distinct) eigenvalues
{:ula S /'LH-l} C {)‘17 SN An} such that

i+1 i41 ]
1 min max |[p(A\;)| =
() pET('n)\jEL|p( J)‘ ZH ‘ﬂk_,uj|

j:]_ k=1

K]
® real eigenvalues : [Liesen & T. 04, Greenbaum ’79]
(1) is equality (proved),

® complex eigenvalues : [Liesen & T. '04]

(1) is equality up to a factor between 1 and % (conjecture).

P. Tichy and J. Liesen



4’6/ Nonnormal matrices A

/

What is the GMRES behavior for nonnormal matrices?

Irall = min [[p(A)b] (GMRES)
< Iﬁﬁ}i Héin |p(A)D|| (worst-case GMRES)
=1 pcmT,;
< n’éin lp(A)]] (ideal GMRES).
P&y

® Eigenvalues may have nothing to do with the convergence behavior.
[Arioli, Greenbaum, Ptak, Strakos 1992-2000]
® Worst-case GMRES can be very different from ideal GMRES.

[Faber & Joubert & Knill & Manteuffel ‘96, Toh '97]

P. Tichy and J. Liesen



4’6/ Toh's example

/

Worst-case GMRES can be very different from ideal GMRES for nonnormal A !

Consider the 4 by 4 matrix

A = : e > 0.

Then, for ¢ = 3,

max min A)b
max min [[p(A)}|

min [|p(A)]

pET;

[Toh '97]

P. Tichy and J. Liesen
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/%’@/ Toh’s matrix

/
A=VIV 1
where
1 1 € € € —¢ |
1 1 -2 =1 0 1
J = : V =- :
—1 1 4 0 —2¢ 0 2e
i —1 0 4 0 0 |
and
4
V) ~ —.
R(V) ~

P. Tichy and J. Liesen
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4’6/ GMRES for a Jordan block

/

Let A > 0. Consider an n by n Jordan block

A1

1
A

What is the situation for a Jordan block? Does it hold
worst-case GMRES = ideal GMRES?

How to describe ideal GMRES convergence?

P. Tichy and J. Liesen

12



4’6/ Known result

/

Known result: Let A be n by n triangular Toeplitz matrix. Then

ax min [[p(A)b| =1 <= min [[p(A)| = 1.
max min {[p(A)b] min [p(A)]

[Faber & Joubert & Knill & Manteuffel ’96]

What is the situation if rréin Ip(A)]| <17
pcTy

P. Tichy and J. Liesen 13



/%’6/ Known result

/

Known result: Let A be n by n triangular Toeplitz matrix. Then

ax min [[p(A)b| =1 <= min [[p(A)| = 1.
max min {[p(A)b] min [p(A)]

[Faber & Joubert & Knill & Manteuffel ’96]

What is the situation if rréin Ip(A)]| <17
pcTy

Definition: The polynomial ; € 7; is called the ith ideal GMRES polynomial of
A € R™* "™ if it satisfies

li(A)]] = min |[p(A)].
pET;

[Existence and uniqueness of ¢; — Greenbaum & Trefethen '94]

We call the matrix ¢;(A) the ith ideal GMRES matrix.

P. Tichy and J. Liesen
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4;’6/ Numerical Experiment

/

The MATLAB-software SDPT3 by Toh — we can compute ideal GMRES matrices!

Let A = J; € R®*®. We display the structure of o;(J;).

e ... nonzero entries, o ... zero entries (or almost)

P. Tichy and J. Liesen
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4;’6/ Numerical Experiment

/

The MATLAB-software SDPT3 by Toh — we can compute ideal GMRES matrices!

Let A = J; € R®*®. We display the structure of o;(J;).

e ... nonzero entries, o ... zero entries (or almost)

p2(J1) ,
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/

The MATLAB-software SDPT3 by Toh — we can compute ideal GMRES matrices!

Let A = J; € R®*®. We display the structure of o;(J;).

e ... nonzero entries, o ... zero entries (or almost)

p3(J1) ,
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4;’6/ Numerical Experiment

/

The MATLAB-software SDPT3 by Toh — we can compute ideal GMRES matrices!

Let A = J; € R®*®. We display the structure of o;(J;).

e ... nonzero entries, o ... zero entries (or almost)

pa(J1) ,

P. Tichy and J. Liesen
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4;’6/ Numerical Experiment

/

The MATLAB-software SDPT3 by Toh — we can compute ideal GMRES matrices!

Let A = J; € R®*®. We display the structure of o;(J;).

e ... nonzero entries, o ... zero entries (or almost)

ps5(J1) ,
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4;’6/ Numerical Experiment

/

The MATLAB-software SDPT3 by Toh — we can compute ideal GMRES matrices!

Let A = J; € R®*®. We display the structure of o;(J;).

e ... nonzero entries, o ... zero entries (or almost)

pe(J1) ,
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4;’6/ Numerical Experiment

/

The MATLAB-software SDPT3 by Toh — we can compute ideal GMRES matrices!

Let A = J; € R®*®. We display the structure of o;(J;).

e ... nonzero entries, o ... zero entries (or almost)

p7(J1) ,

P. Tichy and J. Liesen



/%’@/ Structure behind ideal GMRES convergence

/

There is a structure behind the ideal GMRES convergence.
The structure of ;(J1) depends on relation between i and n.

E.g. if i divides n, m = n/i, then ¢;(J;) =

(in general, the greatest common divisor of  and n plays an important role)

P. Tichy and J. Liesen 15
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4’@/ Lemma

/

From [Greenbaum & Gurvits '94] it follows:

Lemma: Let A € R™*™. The following statements are equivalent:

1. The 7th worst-case GMRES approximation = the ¢th ideal GMRES approx.

2. There exists a unit norm vector b and a polynomial ¢ € 7;, such that
Y(A)b L AIC;(A,D),

and b lies in the span of right singular vectors of ¢)(A) corresponding to its
maximal singular value.

In addition, if 2. holds, then ¥ = ;.

P. Tichy and J. Liesen 16



4’@/ Lemma

/

From [Greenbaum & Gurvits '94] it follows:

Lemma: Let A € R™*™. The following statements are equivalent:

1. The 7th worst-case GMRES approximation = the ¢th ideal GMRES approx.

2. There exists a unit norm vector b and a polynomial ¢ € 7;, such that
Y(A)b L AIC;(A,D),

and b lies in the span of right singular vectors of ¢)(A) corresponding to its
maximal singular value.

In addition, if 2. holds, then ¥ = ;.

Using the orthogonal transformation and this lemma we proved: If 2 divides n then

ideal GMRES = worst-case GMRES

for a Jordan block J . [T.& Liesen ’05]

P. Tichy and J. Liesen 16



4

In more detalls

/

We proved: There is a strong connection between

the ¢th step of ideal GMRES
forJ, e R"*"

where m = n/i. Lete.g. nis even, i =n/2, m = 2.

pi(Jx) =

P. Tichy and J. Liesen

1+ @

1+ @

1+ @®

the |st step of ideal GMRES
forJ,. e R~



4’6/ Interesting details (¢ divides n)

ldeal polynomial ;:

o | o ()\—z)i.

pi(2)

P. Tichy and J. Liesen

[T.& Liesen 05]
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/%’@/ Interesting details (¢ divides n)

/

ldeal polynomial ;: [T.& Liesen '05]

pi(2) = o + o (A—2)"

Let A = 1. Based on numerical experiments we know that

m m + 1

= 1 —2)",
om+1  oame1 LT

pi(2)

where m = n/i, but we were unable to determine ||y, (J1)||-
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/%6/ Interesting details (¢ divides n)

/

ldeal polynomial ;: [T.& Liesen '05]

pi(2) = o + o (A—2)"

Let A = 1. Based on numerical experiments we know that

m m + 1

= 1 —2)",
om+1  oame1 LT

pi(2)

where m = n/i, but we were unable to determine ||y, (J1)||-
Let e.g. n be even, i =n/2, and let \* > <. Then

AN
C4N2 41

i (Ix)l]

P. Tichy and J. Liesen 18



/%’@/ Estimating the ideal GMRES approximation

/

How to estimate the ideal GMRES approximation min, .. |[p(A)| ?

We try to determine sets () C C that are somehow associated with A, and satisfy

min |[p(A)[] ~ minmax |p(2)|.

pET; pem; z&€()

19



/%’@/ Estimating the ideal GMRES approximation

/

How to estimate the ideal GMRES approximation min, .. |[p(A)| ?

We try to determine sets () C C that are somehow associated with A, and satisfy

in ||p(A i .
min |[p(A)]| ~ minmax |p(z)]

® |f A is normalthen () = L.
® |f A is nonnormal then there are several possibilities how to choose (2, e.g.

* e-pseudospectrum of A, [Trefethen]

* polynomial numerical hull of A. [Nevanlinna, Greenbaum]

P. Tichy and J. Liesen
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/%/ Polynomial numerical hull

/

Definition: Let A be n by n matrix. Polynomial numerical hull of degree 7 is
a sets 74, in the complex plane defined as

Hi={2€C: [p(A)] = |p(z)| VpePi,

where P, denotes the set of polynomials of degree 7 or less.

P. Tichy and J. Liesen
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/%’6/ Polynomial numerical hull

/

Definition: Let A be n by n matrix. Polynomial numerical hull of degree 7 is
a sets 74, in the complex plane defined as

Hi={2€C: [p(A)] = |p(z)| VpePi,

where P, denotes the set of polynomials of degree 7 or less.

The set 7, provides a lower bound on the ideal GMRES approximation

>
IggﬂgIIp( || Igrgr:rrg}lp( z)|.

How do these sets look like for a given class of nonnormal matrices?
[papers by Greenbaum et al. 2000-2004]

P. Tichy and J. Liesen



4’6/ 'H; for a Jordan block J

/

'H; is a circle around A with a radius 7; ,.

r1,n, and r,_1 , are known,
[Faber & Greenbaum & Marshall '03]

P. Tichy and J. Liesen
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4’6/ 'H; for a Jordan block J

/

'H; is a circle around A with a radius 7; ,.

r1,n, and r,_1 , are known,
[Faber & Greenbaum & Marshall '03]

T
1., = COS i
L n-+1
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4’6/ 'H; for a Jordan block J

/

'H; is a circle around A with a radius 7; ,.

r1,n, and r,_1 , are known,
[Faber & Greenbaum & Marshall '03]

T
1., = COS X
L n-+1

if n even, r,_1 ,, Is the positive
root of

2r'4+r—1=0.

log(2n)
n

'n—1,n Z 1 —

P. Tichy and J. Liesen
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4;’6/ H; for a Jordan block J, (2 divides n)

/

We proved a connection between
® the ith step of ideal GMRES for J, € R™"*"™ and

® the 1th step of ideal GMRES for J,: € R™*™, m = n/i.

From this connection it follows

1/i
T
Tin = |COS
o=l (55

22



/%’@/ H; for a Jordan block J, (2 divides n)

/

We proved a connection between
® the ith step of ideal GMRES for J, € R™"*"™ and
® the 1th step of ideal GMRES for J,: € R™*™, m = n/i.

From this connection it follows

1/
7
Tin = |COS
v o5

and the bound

"~ T\ < o J < 27!
cos (1) < minllp(J) < AT

for A >r;,.
[T. & Liesen '05]

22



4’@/ General step ¢ (observation), n =9,7 =6

Let d be the greatest common divisor of n and i, ng = n/d, iq = i/d.

wi(Jx)

P. Tichy and J. Liesen 23



4’@/ General step ¢ (observation), n =9,7 =6

/

Let d be the greatest common divisor of n and i, ng = n/d, iq = i/d.

[Ind®€17-7lnd®€d]T o O O o O [Ind®el7'7lnd®€d]

([ ] ©) O
([ ] O
([ ]

wi(Jx)
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Let d be the greatest common divisor of n and i, ng = n/d, iq = i/d.
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4;’6/ General step ¢ (observation), n =9,7 =6

/

Let d be the greatest common divisor of n and i, ng = n/d, iq = i/d.

Two observations (based on numerical experiments):

A. There is a strong connection between:

the ith step of ideal GMRES ~ the 14St step of ideal GMRES
forJ, e R"*" for J,a € R"ax"d

B. If : and n are relative primes then ¢;(J,) has a simple maximal singular
value.

23



/%’@/ General step ¢ (observation), n =9,7 =6

/

Let d be the greatest common divisor of n and i, ng = n/d, iq = i/d.

Two observations (based on numerical experiments):

A. There is a strong connection between:

the ith step of ideal GMRES ~ the 14St step of ideal GMRES
forJ, e R"*" for J,a € R"ax"d

B. If : and n are relative primes then ¢;(J,) has a simple maximal singular
value.

if A. and B. hold then
worst-case GMRES = ideal GMRES for J,, in each step .

23



4’6/ Conclusions for a Jordan block

/

Let : divide n. In these steps i:

® we proved worst-case GMRES = ideal GMRES,
® we determined the ideal GMRES polynomial,
® we know the radius of polynomial numerical hull,

® we derived tight bounds on ||¢;(J)||-

P. Tichy and J. Liesen
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/%’@/ Conclusions for a Jordan block

/

Let : divide n. In these steps i:

® we proved worst-case GMRES = ideal GMRES,
® we determined the ideal GMRES polynomial,
® we know the radius of polynomial numerical hull,

® we derived tight bounds on ||¢;(J)||-

General step i :

Our numerical experiments predict:
worst-case GMRES = ideal GMRES for J, in each step .

Which approximation problem solves ideal GMRES for J ,?

P. Tichy and J. Liesen 24



P. Tichy and J. Liesen

Thank you for your attention!
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