On ideal GMRES for a Jordan Block

Petr Tichý†*

joint work with

Jörg Liesen*

†Institute of Computer Science AS CR, *Technical University of Berlin

February 7-11, 2005. Seminar on Numerical Analysis (SNA), Ostrava, Czech Republic

A system of linear algebraic equations

Consider a system of linear algebraic equations

$$\mathbf{A}x = b$$

 $\mathbf{A} \in \mathbb{R}^{n \times n}$ is nonsingular, $b \in \mathbb{R}^n$.

• How to construct an approximation to the solution?

A system of linear algebraic equations

Consider a system of linear algebraic equations

$$\mathbf{A}x = b$$

 $\mathbf{A} \in \mathbb{R}^{n \times n}$ is nonsingular, $b \in \mathbb{R}^n$.

• How to construct an approximation to the solution?

Projection methods \mapsto Given x_0 . Find an approximation x_i ,

$$x_i \in x_0 + \mathcal{S}_i$$
 such that $r_i \perp \mathcal{C}_i$,

where $r_i = b - \mathbf{A}x_i$.

GMRES - a Krylov subspace method

Krylov subspace methods $\mapsto \mathcal{S}_i \equiv \mathcal{K}_i(\mathbf{A}, r_0) \equiv \operatorname{span}\{r_0, \cdots, \mathbf{A}^{i-1}r_0\}.$

Given $x_0 \in \mathbb{R}^n$, $r_0 = b - \mathbf{A}x_0$. GMRES computes iterates x_i such that

$$x_i \in x_0 + \underbrace{\mathcal{K}_i(\mathbf{A}, r_0)}_{\mathcal{S}_i}$$
 and $r_i \perp \underbrace{\mathbf{A}\mathcal{K}_i(\mathbf{A}, r_0)}_{\mathcal{C}_i}$.

GMRES - a Krylov subspace method

Krylov subspace methods $\mapsto \mathcal{S}_i \equiv \mathcal{K}_i(\mathbf{A}, r_0) \equiv \operatorname{span}\{r_0, \cdots, \mathbf{A}^{i-1}r_0\}.$

Given $x_0 \in \mathbb{R}^n$, $r_0 = b - \mathbf{A}x_0$. GMRES computes iterates x_i such that

GMRES - a Krylov subspace method

Krylov subspace methods $\mapsto \mathcal{S}_i \equiv \mathcal{K}_i(\mathbf{A}, r_0) \equiv \operatorname{span}\{r_0, \cdots, \mathbf{A}^{i-1}r_0\}.$

Given $x_0 \in \mathbb{R}^n$, $r_0 = b - \mathbf{A}x_0$. GMRES computes iterates x_i such that

where $\pi_i \equiv \{ p \text{ is a polynomial}; \deg(p) \leq i; p(0) = 1 \}$.

The GMRES problem

GMRES constructs approximations $x_i \in x_0 + \mathcal{K}_i(\mathbf{A}, r_0)$ to the solution x of the system $\mathbf{A}x = b$ such that

$$||r_i|| = \min_{p \in \pi_i} ||p(\mathbf{A}) r_0||.$$

Our aim:

Description and understanding of this minimization process.

The GMRES problem

GMRES constructs approximations $x_i \in x_0 + \mathcal{K}_i(\mathbf{A}, r_0)$ to the solution x of the system $\mathbf{A}x = b$ such that

$$||r_i|| = \min_{p \in \pi_i} ||p(\mathbf{A}) r_0||.$$

• Our aim:

Description and understanding of this minimization process.

Considered classes of matrices in this talk:

Normal matrices and Jordan blocks.

For simplicity:

Let $x_0 = 0$, i.e. $r_0 = b - Ax_0 = b$ and let ||b|| = 1.

\$i5

Outline

- 1. Introduction
- 2. Bounds and Questions
- 3. GMRES for normal matrices
- 4. GMRES for nonnormal matrices
- 5. GMRES for a Jordan block
- 6. Polynomial numerical hull for a Jordan block
- 7. Conclusions

For simplicity assume $x_0 = 0$ and ||b|| = 1. Then

$$||r_i|| = \min_{p \in \pi_i} ||p(\mathbf{A})b||$$
 (GMRES)

For simplicity assume $x_0 = 0$ and ||b|| = 1. Then

$$\|r_i\| = \min_{p \in \pi_i} \|p(\mathbf{A})b\|$$
 (GMRES) $\leq \max_{\|b\|=1} \min_{p \in \pi_i} \|p(\mathbf{A})b\|$ (worst-case GMRES)

For simplicity assume $x_0 = 0$ and ||b|| = 1. Then

$$\|r_i\| = \min_{p \in \pi_i} \|p(\mathbf{A})b\|$$
 (GMRES) $\leq \max_{\|b\|=1} \min_{p \in \pi_i} \|p(\mathbf{A})b\|$ (worst-case GMRES) $\leq \min_{p \in \pi_i} \|p(\mathbf{A})\|$ (ideal GMRES).

For simplicity assume $x_0 = 0$ and ||b|| = 1. Then

$$\|r_i\| = \min_{p \in \pi_i} \|p(\mathbf{A})b\|$$
 (GMRES) $\leq \max_{\|b\|=1} \min_{p \in \pi_i} \|p(\mathbf{A})b\|$ (worst-case GMRES) $\leq \min_{p \in \pi_i} \|p(\mathbf{A})\|$ (ideal GMRES).

Our questions:

- When ideal GMRES = worst-case GMRES?
- How to evaluate or estimate the ideal GMRES bound?
- Which b yields the worst-case residual norm?
- Relevance of the bound?

GMRES for normal matrices

Let A be nonsingular and normal,

$$\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^H, \quad \mathbf{Q}^H \mathbf{Q} = \mathbf{I}, \quad \mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \dots, \lambda_n).$$

Then

worst-case GMRES = ideal GMRES.

[Greenbaum & Gurvits '94, Joubert '94]

GMRES for normal matrices

Let A be nonsingular and normal,

$$\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^H, \quad \mathbf{Q}^H \mathbf{Q} = \mathbf{I}, \quad \mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \dots, \lambda_n).$$

Then

worst-case GMRES = ideal GMRES.

[Greenbaum & Gurvits '94, Joubert '94]

Moreover

$$\min_{p \in \pi_i} \|p(\mathbf{A})\| = \min_{p \in \pi_i} \max_{\lambda_j \in L} |p(\lambda_j)|$$

where $L \equiv \{\lambda_1, \dots, \lambda_n\}$.

Evaluation of the bound (A normal)

Conjecture: There exists a subset of i+1 (distinct) eigenvalues $\{\mu_1,\ldots,\mu_{i+1}\}\subseteq\{\lambda_1,\ldots,\lambda_n\}$ such that

(1)
$$\min_{p \in \pi_n} \max_{\lambda_j \in L} |p(\lambda_j)| \approx \left(\sum_{j=1}^{i+1} \prod_{k=1 \atop k \neq j}^{i+1} \frac{|\mu_k|}{|\mu_k - \mu_j|} \right)^{-1}.$$

real eigenvalues :

[Liesen & T. '04, Greenbaum '79]

- (1) is equality (proved),
- complex eigenvalues :

[Liesen & T. '04]

(1) is equality up to a factor between 1 and $\frac{4}{\pi}$ (conjecture).

Nonnormal matrices A

What is the GMRES behavior for nonnormal matrices?

$$\|r_i\| = \min_{p \in \pi_i} \|p(\mathbf{A})b\|$$
 (GMRES) $\leq \max_{\|b\|=1} \min_{p \in \pi_i} \|p(\mathbf{A})b\|$ (worst-case GMRES) $\leq \min_{p \in \pi_i} \|p(\mathbf{A})\|$ (ideal GMRES).

Eigenvalues may have nothing to do with the convergence behavior.

[Arioli, Greenbaum, Pták, Strakoš 1992–2000]

Worst-case GMRES can be very different from ideal GMRES.

[Faber & Joubert & Knill & Manteuffel '96, Toh '97]

Toh's example

Worst-case GMRES can be very different from ideal GMRES for nonnormal A!

Consider the 4 by 4 matrix

$$\mathbf{A} = \begin{bmatrix} 1 & \epsilon \\ & -1 & \epsilon^{-1} \\ & & 1 & \epsilon \\ & & -1 \end{bmatrix}, \quad \epsilon > 0.$$

Then, for i = 3,

$$\frac{\max \min_{\|b\|=1} \min_{p \in \pi_i} \|p(\mathbf{A})b\|}{\min_{p \in \pi_i} \|p(\mathbf{A})\|} \to 0 \quad \text{as} \quad \epsilon \to 0.$$

[Toh '97]

Toh's matrix

$$\mathbf{A} = \mathbf{V}\mathbf{J}\mathbf{V}^{-1},$$

where

$$\mathbf{J} = \begin{bmatrix} 1 & 1 & & & \\ & 1 & & \\ & & -1 & 1 \\ & & & -1 \end{bmatrix}, \quad \mathbf{V} = \frac{1}{4} \begin{bmatrix} \epsilon & \epsilon & \epsilon & -\epsilon \\ -2 & -1 & 0 & 1 \\ 0 & -2\epsilon & 0 & 2\epsilon \\ 0 & 4 & 0 & 0 \end{bmatrix},$$

and

$$\kappa({f V}) \, \sim \, rac{4}{\epsilon} \, .$$

GMRES for a Jordan block

Let $\lambda > 0$. Consider an n by n Jordan block

$$\mathbf{J}_{\lambda} = \begin{bmatrix} \lambda & 1 & & & \\ & \ddots & \ddots & & \\ & & \ddots & 1 & \\ & & & \lambda \end{bmatrix} \in \mathbb{R}^{n \times n}.$$

What is the situation for a Jordan block? Does it hold

worst-case GMRES = ideal GMRES?

How to describe ideal GMRES convergence?

Sitt

Known result

Known result: Let A be n by n triangular Toeplitz matrix. Then

$$\max_{\|b\|=1} \min_{p \in \pi_i} \|p(\mathbf{A})b\| = 1 \quad \Longleftrightarrow \quad \min_{p \in \pi_i} \|p(\mathbf{A})\| = 1.$$

[Faber & Joubert & Knill & Manteuffel '96]

What is the situation if $\min_{p \in \pi_i} \|p(\mathbf{A})\| < 1$?

Known result

Known result: Let A be n by n triangular Toeplitz matrix. Then

$$\max_{\|b\|=1} \min_{p \in \pi_i} \|p(\mathbf{A})b\| = 1 \quad \Longleftrightarrow \quad \min_{p \in \pi_i} \|p(\mathbf{A})\| = 1.$$

[Faber & Joubert & Knill & Manteuffel '96]

What is the situation if $\min_{p \in \pi_i} ||p(\mathbf{A})|| < 1$?

Definition: The polynomial $\varphi_i \in \pi_i$ is called the *i*th ideal GMRES polynomial of $\mathbf{A} \in \mathbb{R}^{n \times n}$, if it satisfies

$$\|\varphi_i(\mathbf{A})\| = \min_{p \in \pi_i} \|p(\mathbf{A})\|.$$

[Existence and uniqueness of $\varphi_i \rightarrow$ Greenbaum & Trefethen '94]

We call the matrix $\varphi_i(\mathbf{A})$ the *i*th ideal GMRES matrix.

\$i\$

Numerical Experiment

The MATLAB-software SDPT3 by Toh \rightarrow we can compute ideal GMRES matrices!

Let $\mathbf{A} = \mathbf{J}_1 \in \mathbb{R}^{8 \times 8}$. We display the structure of $\varphi_i(\mathbf{J}_1)$.

The MATLAB-software SDPT3 by Toh → we can compute ideal GMRES matrices!

Let $\mathbf{A} = \mathbf{J}_1 \in \mathbb{R}^{8 \times 8}$. We display the structure of $\varphi_i(\mathbf{J}_1)$.

$$arphi_1(\mathbf{J}_1)= egin{bmatrix} lacksquare & lacksqua$$

The MATLAB-software SDPT3 by Toh → we can compute ideal GMRES matrices!

Let $\mathbf{A} = \mathbf{J}_1 \in \mathbb{R}^{8 \times 8}$. We display the structure of $\varphi_i(\mathbf{J}_1)$.

The MATLAB-software SDPT3 by Toh → we can compute ideal GMRES matrices!

Let $\mathbf{A} = \mathbf{J}_1 \in \mathbb{R}^{8 \times 8}$. We display the structure of $\varphi_i(\mathbf{J}_1)$.

The MATLAB-software SDPT3 by Toh → we can compute ideal GMRES matrices!

Let $\mathbf{A} = \mathbf{J}_1 \in \mathbb{R}^{8 \times 8}$. We display the structure of $\varphi_i(\mathbf{J}_1)$.

The MATLAB-software SDPT3 by Toh \rightarrow we can compute ideal GMRES matrices!

Let $\mathbf{A} = \mathbf{J}_1 \in \mathbb{R}^{8 \times 8}$. We display the structure of $\varphi_i(\mathbf{J}_1)$.

$$arphi_5(\mathbf{J}_1)=$$

The MATLAB-software SDPT3 by Toh \rightarrow we can compute ideal GMRES matrices!

Let $\mathbf{A} = \mathbf{J}_1 \in \mathbb{R}^{8 \times 8}$. We display the structure of $\varphi_i(\mathbf{J}_1)$.

$$arphi_6(\mathbf{J}_1)= egin{bmatrix} lackbox{\circ} & lackbox{$$

The MATLAB-software SDPT3 by Toh \rightarrow we can compute ideal GMRES matrices!

Let $\mathbf{A} = \mathbf{J}_1 \in \mathbb{R}^{8 \times 8}$. We display the structure of $\varphi_i(\mathbf{J}_1)$.

Structure behind ideal GMRES convergence

There is a structure behind the ideal GMRES convergence.

The structure of $\varphi_i(J_1)$ depends on relation between i and n.

E.g. if i divides n, $m \equiv n/i$, then $\varphi_i(\mathbf{J}_1) =$

(in general, the greatest common divisor of i and n plays an important role)

Structure behind ideal GMRES convergence

There is a structure behind the ideal GMRES convergence.

The structure of $\varphi_i(J_1)$ depends on relation between i and n.

E.g. if i divides n, $m \equiv n/i$,

(in general, the greatest common divisor of i and n plays an important role)

Structure behind ideal GMRES convergence

There is a structure behind the ideal GMRES convergence.

The structure of $\varphi_i(J_1)$ depends on relation between i and n.

E.g. if i divides n, $m \equiv n/i$,

(in general, the greatest common divisor of i and n plays an important role)

\$i5

Lemma

From [Greenbaum & Gurvits '94] it follows:

Lemma: Let $A \in \mathbb{R}^{n \times n}$. The following statements are equivalent:

- 1. The *i*th worst-case GMRES approximation = the *i*th ideal GMRES approx.
- 2. There exists a unit norm vector b and a polynomial $\psi \in \pi_i$, such that

$$\psi(\mathbf{A})b \perp \mathbf{A}\mathcal{K}_i(\mathbf{A},b),$$

and b lies in the span of right singular vectors of $\psi(A)$ corresponding to its maximal singular value.

In addition, if 2. holds, then $\psi = \varphi_i$.

\$i5

Lemma

From [Greenbaum & Gurvits '94] it follows:

Lemma: Let $A \in \mathbb{R}^{n \times n}$. The following statements are equivalent:

- 1. The *i*th worst-case GMRES approximation = the *i*th ideal GMRES approx.
- 2. There exists a unit norm vector b and a polynomial $\psi \in \pi_i$, such that

$$\psi(\mathbf{A})b \perp \mathbf{A}\mathcal{K}_i(\mathbf{A},b),$$

and b lies in the span of right singular vectors of $\psi(A)$ corresponding to its maximal singular value.

In addition, if 2. holds, then $\psi = \varphi_i$.

Using the orthogonal transformation and this lemma we proved: If i divides n then

ideal GMRES = worst-case GMRES

for a Jordan block J_{λ} .

[T.& Liesen '05]

In more details

We proved: There is a strong connection between

the *i*th step of ideal GMRES for $\mathbf{J}_{\lambda} \in \mathbb{R}^{n \times n}$

 $\longleftrightarrow \quad \begin{array}{l} \text{the 1st step of ideal GMRES} \\ \text{for } \mathbf{J}_{\lambda^i} \in \mathbb{R}^{m \times m} \end{array}$

where m=n/i. Let e.g. n is even, i=n/2, m=2.

$$arphi_i(\mathbf{J}_{\lambda}) = egin{bmatrix} \pmullet \ & \pmullet \ & ullet \ & ull$$

Interesting details (i divides n)

Ideal polynomial φ_i :

[T.& Liesen '05]

$$\varphi_i(z) = \bullet + \bullet (\lambda - z)^i.$$

Interesting details (i divides n)

Ideal polynomial φ_i :

[T.& Liesen '05]

$$\varphi_i(z) = \bullet + \bullet (\lambda - z)^i.$$

Let $\lambda = 1$. Based on numerical experiments we know that

$$\varphi_i(z) = \frac{m}{2m+1} + \frac{m+1}{2m+1} (1-z)^i,$$

where m = n/i, but we were unable to determine $\|\varphi_i(\mathbf{J}_1)\|$.

Interesting details (i divides n)

Ideal polynomial φ_i :

[T.& Liesen '05]

$$\varphi_i(z) = \bullet + \bullet (\lambda - z)^i.$$

Let $\lambda = 1$. Based on numerical experiments we know that

$$\varphi_i(z) = \frac{m}{2m+1} + \frac{m+1}{2m+1} (1-z)^i,$$

where m = n/i, but we were unable to determine $\|\varphi_i(\mathbf{J}_1)\|$.

Let e.g. n be even, i=n/2, and let $\lambda^i \geq \frac{1}{2}$. Then

$$\|\varphi_i(\mathbf{J}_\lambda)\| = \frac{4\lambda^i}{4\lambda^{2i} + 1}.$$

Estimating the ideal GMRES approximation

How to estimate the ideal GMRES approximation $\min_{p \in \pi_i} ||p(\mathbf{A})||$?

We try to determine sets $\Omega \subset \mathbb{C}$ that are somehow associated with \mathbf{A} , and satisfy

$$\min_{p \in \pi_i} \|p(\mathbf{A})\| \sim \min_{p \in \pi_i} \max_{z \in \Omega} |p(z)|.$$

Estimating the ideal GMRES approximation

How to estimate the ideal GMRES approximation $\min_{p \in \pi_i} ||p(\mathbf{A})||$?

We try to determine sets $\Omega \subset \mathbb{C}$ that are somehow associated with \mathbf{A} , and satisfy

$$\min_{p \in \pi_i} \|p(\mathbf{A})\| \sim \min_{p \in \pi_i} \max_{z \in \Omega} |p(z)|.$$

- If **A** is normal then $\Omega = L$.
- If A is nonnormal then there are several possibilities how to choose Ω , e.g.
 - * ε -pseudospectrum of **A**,

[Trefethen]

* polynomial numerical hull of A.

[Nevanlinna, Greenbaum]

Polynomial numerical hull

Definition: Let A be n by n matrix. Polynomial numerical hull of degree i is a sets \mathcal{H}_i in the complex plane defined as

$$\mathcal{H}_i \equiv \{ z \in \mathbb{C} : \|p(\mathbf{A})\| \ge |p(z)| \ \forall \ p \in \mathcal{P}_i \},$$

where \mathcal{P}_i denotes the set of polynomials of degree i or less.

Polynomial numerical hull

Definition: Let A be n by n matrix. Polynomial numerical hull of degree i is a sets \mathcal{H}_i in the complex plane defined as

$$\mathcal{H}_i \equiv \{ z \in \mathbb{C} : \|p(\mathbf{A})\| \ge |p(z)| \ \forall \ p \in \mathcal{P}_i \},$$

where \mathcal{P}_i denotes the set of polynomials of degree i or less.

The set \mathcal{H}_i provides a lower bound on the ideal GMRES approximation

$$\min_{p \in \pi_i} ||p(\mathbf{A})|| \ge \min_{p \in \pi_i} \max_{z \in \mathcal{H}_i} |p(z)|.$$

How do these sets look like for a given class of nonnormal matrices?

[papers by Greenbaum et al. 2000-2004]

\mathcal{H}_i for a Jordan block \mathbf{J}_λ

\mathcal{H}_i for a Jordan block \mathbf{J}_λ

 \mathcal{H}_i is a circle around λ with a radius $r_{i,n}$.

 $r_{1,n}$ and $r_{n-1,n}$ are known,

[Faber & Greenbaum & Marshall '03]

$$r_{1,n} = \cos\left(\frac{\pi}{n+1}\right).$$

\mathcal{H}_i for a Jordan block \mathbf{J}_λ

 \mathcal{H}_i is a circle around λ with a radius $r_{i,n}$.

 $r_{1,n}$ and $r_{n-1,n}$ are known,

[Faber & Greenbaum & Marshall '03]

$$r_{1,n} = \cos\left(\frac{\pi}{n+1}\right).$$

if n even, $r_{n-1,n}$ is the positive root of

$$2r^{n} + r - 1 = 0$$
.
 $r_{n-1,n} \ge 1 - \frac{\log(2n)}{n}$

\mathcal{H}_i for a Jordan block \mathbf{J}_{λ} (*i* divides *n*)

We proved a connection between

- ullet the ith step of ideal GMRES for $\mathbf{J}_{\lambda} \in \mathbb{R}^{n \times n}$ and
- the 1th step of ideal GMRES for $\mathbf{J}_{\lambda^i} \in \mathbb{R}^{m \times m}$, m = n/i.

From this connection it follows

$$r_{i,n} = \left[\cos\left(\frac{\pi}{m+1}\right)\right]^{1/i}$$

\mathcal{H}_i for a Jordan block \mathbf{J}_{λ} (*i* divides *n*)

We proved a connection between

- ullet the ith step of ideal GMRES for $\mathbf{J}_{\lambda} \in \mathbb{R}^{n \times n}$ and
- the 1th step of ideal GMRES for $J_{\lambda^i} \in \mathbb{R}^{m \times m}$, m = n/i.

From this connection it follows

$$r_{i,n} = \left[\cos\left(\frac{\pi}{m+1}\right)\right]^{1/i}$$

and the bound

$$\lambda^{-i} \cos\left(\frac{\pi}{m+1}\right) \le \min_{p \in \pi_i} \|p(\mathbf{J}_{\lambda})\| \le \lambda^{-i},$$

for $\lambda \geq r_{i,n}$.

[T. & Liesen '05]

General step i (observation), n = 9, i = 6

Let d be the greatest common divisor of n and i, $n_d = n/d$, $i_d = i/d$.

 $\varphi_i(\mathbf{J}_{\lambda})$

General step i (observation), n = 9, i = 6

Let d be the greatest common divisor of n and i, $n_d = n/d$, $i_d = i/d$.

$$[I_{n_d}\otimes e_1,\ldots,I_{n_d}\otimes e_d]^T egin{bmatrix} lackbox{0.5cm} & lackbox{0.5cm} &$$

$$\varphi_i(\mathbf{J}_{\lambda})$$

Sitt.

General step i (observation), n = 9, i = 6

Let d be the greatest common divisor of n and i, $n_d = n/d$, $i_d = i/d$.

General step i (observation), n=9, i=6

Let d be the greatest common divisor of n and i, $n_d = n/d$, $i_d = i/d$.

Two observations (based on numerical experiments):

A. There is a strong connection between:

the
$$i$$
th step of ideal GMRES for $\mathbf{J}_{\lambda} \in \mathbb{R}^{n \times n}$ the i_d st step of ideal GMRES for $\mathbf{J}_{\lambda^d} \in \mathbb{R}^{n_d \times n_d}$

B. If i and n are relative primes then $\varphi_i(\mathbf{J}_{\lambda})$ has a simple maximal singular value.

General step i (observation), n = 9, i = 6

Let d be the greatest common divisor of n and i, $n_d = n/d$, $i_d = i/d$.

Two observations (based on numerical experiments):

A. There is a strong connection between:

the
$$i$$
th step of ideal GMRES for $\mathbf{J}_{\lambda} \in \mathbb{R}^{n \times n}$ the i_d st step of ideal GMRES for $\mathbf{J}_{\lambda^d} \in \mathbb{R}^{n_d \times n_d}$

B. If i and n are relative primes then $\varphi_i(\mathbf{J}_{\lambda})$ has a simple maximal singular value.

if A. and B. hold then

worst-case GMRES = ideal GMRES for J_{λ} in each step *i*.

Conclusions for a Jordan block

Let i divide n. In these steps i:

- we proved worst-case GMRES = ideal GMRES,
- we determined the ideal GMRES polynomial,
- we know the radius of polynomial numerical hull,
- we derived tight **bounds** on $\|\varphi_i(\mathbf{J}_{\lambda})\|$.

P. Tichý and J. Liesen

Conclusions for a Jordan block

Let i divide n. In these steps i:

- we proved worst-case GMRES = ideal GMRES,
- we determined the ideal GMRES polynomial,
- we know the radius of polynomial numerical hull,
- we derived tight bounds on $\|\varphi_i(\mathbf{J}_{\lambda})\|$.

General step i:

Our numerical experiments predict:

worst-case GMRES = ideal GMRES for J_{λ} in each step *i*.

Which approximation problem solves ideal GMRES for J_{λ} ?

Thank you for your attention!