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1. Basic problem

Ax = b

• A is n× n, symmetric and inde�nite

• A is large and sparse

Arises in many applications, often in
specialized forms

• saddle-point problems (CFD, mixed FEM,
optimization, optimal control, . . .)

• \shift-and-invert", Jacobi-Davidson algori-
thms
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2. Inde�nite solvers - an overview

Saddle-point problems: specialized solvers




A B
BT −C




• Reduction to a de�nite system

{ Schur complement approach
{ dual variable (null-space) approach
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• Solving original inde�nite system

{ direct solvers
{ preconditioned iterative solvers

(block DIAG, block TR, constraint pre-
conditioners,
inner block reductions)

• Split and solve approaches (HSS iterations,
HSS preconditioners)
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Our focus: general inde�nite systems

• Sparse direct methods (MA27, MA47, MA57;
Du� et al.)

{ very powerful; inherent limits of direct
methods

• Preconditioned iterative methods

{ Block SSOR and symmetric ILUT pre-
conditioners (Freund, 1997)

{ Diagonal pivoting and inverse diagonal
pivoting preconditioners; symmetric Kry-
lov methods (Benzi, T., 2002); often
useful for weakly inde�nite systems

{ Approximate diagonal pivoting decom-
positions (right-looking, based on linked-
lists) for smoothing (Qu, Fish, 2001)

{ Diagonal pivoting preconditioners with
diagonal
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and Bunch-Kaufmann pivoting (left-looking);
nonsymmetric Krylov methods (Li, Saad,
2004).

{ the problem is di�cult: implementati-
ons/algorithms
typically very fragile



3. Preprocessing techniques

Powerful matrix preorderings:
nonsymmetric case

• permutation to get a nonzero diagonal {
a classical technique for nonsymmetric ma-
trices (Du�, 1977)
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Powerful matrix preorderings:
nonsymmetric case

• strengthening diagonal/block-diagonal do-
minance

{ e.g. sum/product matching problem {
maximize
sum/product of modules of transversal
entries

{ Olschowka, Neumaier, 1999; Du�, Kos-
ter, 1997, 2001; Benzi, Haws, T., 1999.

{ but: permutations are generally nonsy-
mmetric
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Symmetric case

• Idea of Iain Du� and John Gilbert (2002) {
split the loops of a nonsymmetric permu-
tation

• our example:
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Symmetric case: symmetrized
permutation based on the loops
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Symmetric case: symmetrized
permutation based on the loops



∗ ∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗

∗




1

5

2 3

4

⇓



∗ ∗ ∗
∗

∗ ∗
∗ ∗ ∗

∗ ∗




17



Symmetric case: symmetrized
permutation based on the loops
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Symmetric case: symmetrized
permutation based on the loops

• summarized idea:
bipartite matching → loops → general
matching

• previous work based on this strategy:

{ static preordering for direct methods:
Du�, Pralet, 2004; additional criterion:
based on sparsity of rows/columns

{ preordering for approximate decomposi-
tions
for preconditioning : Hagemann, Schenk,
2004
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New idea: general graph matching

• avoids problems with splitting odd loops
(not the problems with odd n)

• how to de�ne graph edge weights?
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General graph matching: how to de�ne
graph weights

• �rst possibility:

weightij = |aij| + α(|aii| + |ajj|)

• α balances inuence of diagonals and o�-
diagonals
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General graph matching: how to de�ne
graph weights

• another approach: weights are entry sizes;
derived (doubled) graph
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4. Preconditioning strategies

• extended set of options with respect to
Benzi, T. 2002

• right-looking (submatrix) implementation
of incomplete decompositions

• Bunch-Parlett-Kaufmann family of pivoting
options

{ Bunch-Parlett with various pivotings
{ Bunch-Kaufmann variations
{ bounded Bunch-Kaufmann (Ashcraft, Gri-

mes, Lewis, 1997)
{ Bunch tridiagonal pivoting (Bunch, 1973;

Hagemann, Schenk, 2004)
{ Bunch-Kaufmann pentadiagonal pivoting
{ approximate LDLT decomposition
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Other implemented preconditioners

• sparse LTLT decomposition

{ slow (�ll-in in exact case given by ∑n
i=1 adj(T [i]),

see Ashcraft, Grimes, Lewis, 1997)
{ if incomplete, large growth in the sub-

matrix

• saddle-point reconstruction

{ A =

(
Â B̂

B̂T −Ĉ

)

{ sometimes useful
{ not much improvement for strongly in-

de�nite problems

• block diagonal, block symmetric Gauss-Seidel;
blocks based on matchings or TPABLO
(O'Neil, Szyld,1990)
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6. Experimental results

• preconditioned MINRES (implemented as
smoothed CG;
similar results for preconditioned symmet-
ric QMR)

• MMD on blocks/vertices,
(see Qu, Fish, 2001; cf. Benzi, Szyld, Van
Duin, 1999)

• presenting results with approximate diago-
nal pivoting decomposition; tridiagonal pi-
voting in most cases; whenever this fails,
replaced by Bunch-Kaufmann pivoting

• bipartite matching: MC64 (Du�, Koster,
2001; HSL)

• general matching by greedy heuristics (tes-
ted also Blossom 3 (Cook, Rohe, 1998);
SMP (Burkard, Derigs, 1980); WMATCH
(Rothberg, 1973)).
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• in some cases: other preprocessings are bet-
ter:
e.g., TPABLO (O'Neil, Szyld, 1990)

• stopping criterion: relative residual norm
reduction by 10−8

• a subset of matrices from Li, Saad (2004);
Hagemann, Schenk (2004)



Tested matrices

Matrix n nz
C-41 9769 55757
C-19 2327 12072
C-64 51035 384438
C-70 68924 363955
C-71 76638 468096

traj33 20006 504090
traj27 17148 242286
sti�5 33410 177384

mass05 33410 241140
heat02 10295 90129
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Results of experiments

symm matching general matching no matching
Matrix Size p its Size p its Size p its
C-41 118323 315 117168 129 100648 23
C-19 26411 7 26805 8 27833 5
C-64 604274 63 615061 55 493287 184
C-70 1186138 12 1162256 9 865192 8
C-71 1421761 15 1421994 45 1388772 117

traj33 221223 464 102629 186 102024 146
traj27 106633 471 105819 140 104679 153
sti�5 202983 80 217119 72 287761 166

mass05 41817 24 41216 52 56865 †
heat02 247912 34 410773 45 631236 53
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7. Conclusions

• approximate diagonal pivoting preconditio-
ning is becoming a standard and reasonably
reliable strategy

• block preprocessing techniques can improve
the behavior; it should be developed further

• all preprocessings: still a gap before getting
to be mature

• solving general inde�nite systems is very
di�cult: in many cases only one speciali-
zed technique (Schur complement appro-
ach) works
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