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1. Motivation / Newton’s method

1. Solving systems of nonlinear equations

F(x)=0

4

Sequences of linear systems of the form

J(xp)Ax = —F(xy), J(zp) =~ F'(xy)

solved until forsome k, k=1,2, ...

| F(x)|| < tol

J(xr) may change at points influenced by nonlinearities



4’6/ 1. Motivation / Nonlinear convection-diffusion

2. Solving nonlinear convection-diffusion problems
—Au+uVu=f
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E.g., from the upwind discretization in 2D, with « > 0 we get for grid
internal nodes (7, j)

_ 1,2
Wi1,j + Wim1,j + Wi g1 + Ui j—1 — duij + P (2uij — ui—1j — uij—1) = h”fi;

It is a matrix with five diagonals

Entries in its three diagonals may change in subsequent linear systems



/%’6/ 1. Motivation / Parabolic equation

3. Solving equations with a parabolic term

ou

4

E.g., 2D problem with 2"¢ order centered differences in space and
backward Euler time discretization for grid internal nodes (i, ) and time
stept+1

2/ t+1 ' t+1 t+1 t+1 t+1 t+1\ _ 1.2 pt+1
h (uz’j — uz’j) + T(uz‘—}—l,j TU T U T U 4uij ) =h"T ij

Again, we get a matrix with five diagonals

Diagonal entries change with time steps



4’6/ 2. Our goal / Reuse of approximations

/

Reuse of approximations of matrices in sequences of linear systems

Notation: Matrices: A", A!, ... Their approximations: M°, M1, ...
Two basic strategies for the reuse

1. Reuse of patterns and values
e More at Householder Symposium XVI., May 23-27, 2005 Seven
Springs Mountain Resort.

2. Reuse of patterns of matrix approximations
 Using pattern of M to get M**+* from A**+* for some k > 1

e Using a pattern of A; (a part of 4;) to get M*+* from A*+* for some
k>1

1st step: Gangster projection (Toint, 1977) Gpattern : R™" — IR ™:

Aith _ Azjk if (i,7) € pattern
e 0 otherwise.

2nd step: Compute M from A%F*.



/%’6/ 2. Our goal / Matrices from FD

No problem if matrix approximations are readily available
But: matrices are often given only implicitly.

For example: linear solvers in Newton-Krylov framework (see, e.g., Knoll,
Keyes, 2004)

J(xp)Ax = —F(xy), J(zp) =~ F'(x2})

e Only matvecs F'(x)v for a given vector v are typically performed.
e Finite differences can be used to get such products:

F(xp + ev) — F(xy)

matrices are always present in more or less implicit form: a tradeoff:
Implicitness x fast execution appears in many algorithms

~ F'(z})v

For strong algebraic preconditioners we need matrix approximations



/%’6/ 2. Our goal: Related approaches

Some related work

Note: For some preconditioners (e.g., Jacobi, ILU(0)) we do not need to
get the matrix approximation

Part of the matrix known in advance: partial graph coloring,
Gebremedhin, Manne, Pothen, 2003.

Preconditioner computed from a related matrix, operator (e.g., based on
orthogonal grid, Truchas code, LANL, 2003; a lot of approaches)

Reuse of the whole preconditioner (approximation) (both values and
structure) over a couple of steps, see Morales, Nocedal, 2000



4’6/ 2. Our goal: Example of preconditioner reuse

/

An example of reuse of a preconditioner

The 2D nonlinear convection-diffusion problem (Kelley, 1995); 5-point
finite diferences; uniform grid 70 x 70; first 8 systems (the same behaviour
for the whole set of 14 systems); ILUT(0.1,5)

Au — RuVu = 2000x(1 — z)y(1 — y), R =500

A-matrix | M-matrix | CG — its
Al M?t 25
A? M1 98
A3 M1 90
A M1 135
A M?t 179
AS M1 229
A7 M1 275
A8 M1 345

Al—8 M1—8 25 + 10




4’6/ 3. Matrix-free environment

Getting a matrix approximation stored implicitly: cases

Get the matrix A, by n matvecs Ae;, 5 =1,...,n (Inefficient)

A sparse A, can be often obtained via a significantly less matvecs

than n by grouping computed columns if we know its pattern.

0 pattern (stencil) is often known (e.g., given by the problem grid in
PDE problems)

0 often used in practice

but for approximating A, we do not need so much

It might be enough to use an approximate pattern of a different but
structurally similar matrix
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4’6/ 4. Matrix estimation: |I.

How to approximate a matrix by small number of matvecs if we know
matrix pattern:

Example 1: Efficient estimation of a banded matrix

(Q* \
h *x x
x kM
x M *
h =
x kM
*x M *

\ o <
Columns with “red spades” can be computed at the same time in one
matvec since sparsity patterns of their rows do not overlap. Namely,

A(ey + e4 + e7) computes entries in the columns 1, 4 and 7.

M. Tima
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4’6/ 4. Matrix estimation: Il.

M. Tima

How to approximate a matrix by small number of matvecs if we know
matrix pattern:

Example 2: Efficient estimation of a general matrix

[+« o+

* ok *

X ok *

S X Ok
X ox Xk

\ * * X )

Again, By one matvec can be computed the columns for which sparsity
patterns of their rows do not overlap.
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4’6/ 4. Matrix estimation: Il.

How to approximate a matrix by small number of matvecs if we know
matrix pattern:

Example 2: Efficient estimation of a general matrix

" Y *
x M *
[ % %
S
\ Yy

Again, By one matvec can be computed the columns for which sparsity
patterns of their rows do not overlap.
For example, A(e; + e3 + eg) computes entries in the columns 1, 3 and 6.

M. Tima 12



4’6/ 4. Matrix estimation: Il.

How to approximate a matrix by small number of matvecs if we know
matrix pattern:

Example 2: Efficient estimation of a general matrix

(& & \
oA &
A
& &

o a

\ A 'Yy

Entries in A can be computed by four matvecs.
In each matvec we need to have structurally orthogonal columns.



/%’6/ 4. Matrix estimation: IlI.

Efficient matrix estimation: well established field

e Structurally orthogonal columns can be grouped

e Finding the minimum number of groups: combinatorially difficult
problem (NP-hard)

e Classical field: a (very restricted) selection of references: Curtis, Powell;
Reid,1974; Coleman, Moré, 1983; Coleman, Moré, 1984; Coleman,
Verma, 1998; Gebremedhin, Manne, Pothen, 2003.

0 extensions to SPD (Hessian) approximations

0 extensions to use both A and A7 in automatic differentiation

0 not only direct determination of resulting entries (substitution
methods)
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4’6/ 4. Matrix estimation: V.

Efficient matrix estimation: graph coloring problem

(& & \
o b &
o b &
& &
o A N\
\ A Y,

 In the other words, columns which form an independent set in the graph
of AT A (called intersection graph) can be grouped = a graph coloring
problem for the graph of A” A.
Problem: Find a coloring of vertices of the graph of AT A (G(A* A)) with

minimum number of colors such that edges connect only vertices of
different colors



’ 5. Partial matrix estimation: Example
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Our matrix is defined only implicitly.

We need to compute an approximation M#** using a pattern of M or A?.

Why?: because we strive to decrease the number of matvecs!

Digital Circuit Matrix memplus; n = 17758: Two pattern sizes of A’

Size = 126150 Size S = 59984
MV = 353 MV =19
Size P | ITS Size P | ITS
221349 16 131266 43
159570 20 92270 58
151681 36 81379 32
147823 43 69656 84
112129 | 202 67042 83
76502 181 66185 73
76044 220 63910 170
75359 236 63722 157
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4’6/ 5. Partial matrix estimation: Getting pattern

Our matrix is defined only implicitly.

4

[ &
&

t dE JE 4

L g
( dE JE JE i o
. dik o

Consider a new pattern: e.g.,
If the entries denoted by & are small, number of groups can be decreased:
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4’6/ 5. Partial matrix estimation: Getting pattern

Our matrix is defined only implicitly.

I

(& & & \
oL &
DR S
& &

DR

\ A s &)

— #
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5. Partial matrix estimation: Incompleteness

Our matrix is defined only implicitly.

[ &
*

{ g
(o G IR J o

t A 4
~—

But: the computation of entries from matvecs is inexact
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4’6/ 6. Computational procedures: |.

Computational procedure |I.

o Step 1: Compute pattern of A’ or M¢. E.g., for A as sparsification of A®:

18



/%’6/ 6. Computational procedures: |.

Computational procedure |I.

e Step 1: Compute pattern of A? or M. E.g., for A¢ as sparsification of A‘:

(& & & N\ [ A \
o s & & &
LN S 3 L
& & &
LN o 4
\ A > a0/ 'Y,



/%’6/ 6. Computational procedures: |.

Computational procedure |I.

e Step 1: Compute pattern of A? or M. E.g., for A¢ as sparsification of A‘:

(& & & N\ [ A \
o s & & &
LN S 3 L
& & & &

LN o 4

\ A > a0/ 'Y,



4’6/ 6. Computational procedures: I.

/

Computational procedure |I.

o Step 1: Compute pattern of A’ or M¢. E.g., for A as sparsification of A®:

e Step 2: Graph coloring problem for the graph G(pattern® pattern) to get
groups.

18



4’6/ 6. Computational procedures: I.

/

Computational procedure |I.

o Step 1: Compute pattern of A’ or M¢. E.g., for A as sparsification of A®:

e Step 2: Graph coloring problem for the graph G(pattern® pattern) to get

groups.
(4 4 \
G G
& &
& &
& &




/%’6/ 6. Computational procedures: I.

/

Computational procedure |I.

Step 3: Using matvecs to get A*** for more indices k£ > 0 as if the
entries outside the pattern are not present

Notes:

getting the entries from the matvecs spoiled by errors
an approximation error for any estimated entry @, ; in A:

2. laud

ke{(i,k)c A\P}

A\P: entries outside the given pattern
The error distribution can be strongly influenced by column grouping
balancing the error

18



5

6. Computational procedures: Il.

/

(diagonal partial coloring problem)

Computational procedure II.
Preconditioner based on exact estimation of off-diagonals in of A*

(& & \ [ & & \
o a & ' &
& & DR S
& & & &

oA DR

\ 4 a6/ L a s &)

Consider a new pattern: e.g.,
If the entries denoted by & are small, number of groups can be decreased:



4’6/ 6. Computational procedures: Il.

/

Computational procedure II.

Preconditioner based on exact estimation of off-diagonals in of A*
(diagonal partial coloring problem)

[ &
*

{ g
(o G IR J o

t A 4
~—

— A

Since all off-diagonals in columns 4 and 5 are computed precisely
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4’6/ 6. Computational procedures: Il.

/

Computational procedure II.

Preconditioner based on exact estimation of off-diagonals in of A*
(diagonal partial coloring problem)

(& & & \
oo &
DR S
& oo
DR

\ A s A
& not — M

Because of row 1
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7. Numerical experiments: MEMPLUS
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Matrix MEMPLUS again

No Sparsification Size S = 59984 Size S = 62281
MV = 353 MV =19 MV = 35
Sze P ITS Size P | ITS Size P | ITS
221349 16 131266 43 249209 17
159570 20 92270 58 154208 29
151681 36 81379 32 146159 48
147823 43 69656 84 85443 63
112129 202 67042 83 69762 466
76502 181 66185 73 68945 536
76044 220 63910 170 64261 449
75359 236 63722 157 62460 368
68991 264 63679 179 62254 285
63093 272 63669 178 62247 385
59547 240 62147 1121 62246 398
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/. Numerical experiments: More matrices: 1/4
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More matrices

Matrix Type n nnz

cubel Heat Conduction 216 4096

grav flowl | 2D Gravitational Flow 750 3580
grav flow2 | 2D Gravitational Flow 3750 23900
palloy? Phase Change 29952 203312
palloy3 Phase Change 103200 | 707272
circuit_1 Digital Circuit 2624 35823
add20 Digital Circuit 2395 17319
add32 Digital Circuit 4960 23884
memplus Digital Circuit 17758 126150
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/. Numerical experiments: More matrices: 2/4
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Full Matrix Estimation

Partial Matrix Estimation

Matrix MV | Size P | ITS | MV | Size S | Size P | ITS
cubel 27 3166 20 24 2168 3166 24
cubel 27 3636 17 25 2395 4084 18

grav flow?2 11 14544 72 7 11830 14962 71
grav flow?2 11 14244 75 7 11830 15334 53

palloy?2 12 156321 5 9 150000 | 150788 6

palloy? 12 145144 6 9 150000 | 167887 6

palloy3 12 576185 6 8 509808 | 539460 7

palloy3 12 731472 6 8 509808 | 730851 7

shermand 27 22159 54 19 11298 21187 55
shermanb 27 24848 43 19 12395 23949 43
add20 84 8611 15 5 8239 8031 16
add20 84 10972 14 5 8239 10112 15

22



’ /. Numerical experiments: More matrices: 3/4

More matrices

Matrix Type n nnz

saylr3 Reservoir Simulation 1000 3750
shermand | Reservoir Simulation | 3312 20793
venkat01 2D Euler 62424 | 1717792
venkat2b 2D Euler 62424 | 1717792
raefskyl Flow 3242 294276
raefsky3 Flow 21200 | 1488768
raefskyb Flow 6316 168658

M. Tima



’ /. Numerical experiments: More matrices: 4/4

Full Matrix Estimation Partial Matrix Estimation
Matrix MV Size P | ITS | MV Size S Size P | ITS
saylr3 9 3337 41 7 3015 3339 41
saylr3 9 4002 24 7 3015 3993 26
circutt_ 1 | 2571 27749 9 4 7539 15118 11
circuit_1 | 2571 32943 8 5 9723 17347 10

venkat(01 44 72393 160 36 1076995 72106 157
venkat01 44 80249 149 37 1362721 80035 147
raefskyl 140 99344 252 121 157585 92445 233
raefskyl 140 132646 286 89 113726 132646 286
raefskyb 65 22903 4 55 71573 26316 5

raefskyd 65 28785 4 58 88134 28325 5

raefsky3 93 2148096 53 82 960589 1663634 48
venkat25 44 2267958 | 116 43 1621131 | 2238075 | 118

M. Tima



/ /. Numerical experiments: A sequence

Driven cavity flow, R = 500, ILUT(1.0 * 109, 25); Newton’s method;
nonlinear residuals from 2.37D-2

No. A-matrix No. P-matrix CG —its
Al M1 via A! and pattern of Al 44
A? M?2 via A2 and pattern of Al 38
A3 M3 via A3 and pattern of Al 41
At M4 via A% and pattern of Al 42
A5 M5 via A5 and pattern of Al 43
A? M? via A2 and pattern of A2 42
A3 M3 via A3 and pattern of A3 38
At M4 via A% and pattern of A% 43
A5 M5 via A5 and pattern of A5 42

Number of matvecs due to the use of sparsified patterns:

51 — 26



4’6/ 8. Conclusions

/

o Matrix-free estimation of matrices can reuse a pattern of a former
member of a sequence of linear systems

» Reuse of pattern is connected with new graph coloring problems
(balanced coloring ; diagonally compensated coloring)

e Experiments confirm usefulness of this approach for solving a sequence
of similar linear systems

M. Tima 26



lungl Biomedical 1650 7419
stomach Biomedical 213360 | 3021648
wangl Semiconductors 2903 19093

appu NASA Benchmark | 14000 | 1853104
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Basic approximation/Our results

mat | n nnz muv | stzep 1t
cl 216 4096 27 | 4438 7
gl 750 3580 7 2909 14
g2 3750 | 23900 | 11 | 14544 23
11 9000 | 60000 | 12 | 9000 12
11 9000 | 60000 | 12 | 133505 | 10
p0 3072 | 20096 | 12 | 3072 3
S2 1280 | 7648 10 | 1280 40
mat | n nnz muv | size, 1t
cl 216 4096 24 | 4438 10
cl 216 4096 21 | 2579 10
cl 216 4096 12 | 1468 11
gl 750 3580 ) 2909 14
g2 3750 | 23900 | 6 14544 | 23

11

NONNN
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SA N O

N N\
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Other matrices

VENKATO1
n nnz muv | stzep 1t
62424 | 1717792 | 44 | 80249 | 99
62424 | 1717792 | 41 | 80219 | 99
62424 | 1717792 | 38 | 80099 | 94
62424 | 1717792 | 36 | 79421 | 98
MEMPLUS (circuit matrix)

n nnz muv | stzep 1t
17958 | 97460 | 353 | 17912 | 543
17958 | 97460 | 19 17912 | 543
17958 | 97460 | 35 17912 | 543
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ADD32
n nnz muv | stze, | it
4960 | 19842 | 15 | 4960 | 55
4960 | 19842 | 15 | 7136 | 28
4960 | 19842 | 5 4960 | 55
4960 | 19842 | 5 7136 | 28
ADD?20
n nnz muv | size, | it
2395 | 13151 | 84 | 3260 | 118
2395 | 13151 | 5 3260 | 118
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