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1. Motivation / Newton’s method

1. Solving systems of nonlinear equations

F (x) = 0

⇓

Sequences of linear systems of the form

J(xk)∆x = −F (xk), J(xk) ≈ F ′(xk)

solved until for some k, k = 1, 2, . . .

‖F (xk)‖ < tol

J(xk) may change at points influenced by nonlinearities
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1. Motivation / Nonlinear convection-diffusion

2. Solving nonlinear convection-diffusion problems

−∆u + u∇u = f

⇓

E.g., from the upwind discretization in 2D, with u ≥ 0 we get for grid
internal nodes (i, j)

ui+1,j +ui−1,j + ui,j+1 + ui,j−1 − 4uij + huij(2uij −ui−1,j −ui,j−1) = h2fij

It is a matrix with five diagonals

Entries in its three diagonals may change in subsequent linear systems
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1. Motivation / Parabolic equation

3. Solving equations with a parabolic term

∂u

∂t
− ∆u = f

⇓

E.g., 2D problem with 2nd order centered differences in space and
backward Euler time discretization for grid internal nodes (i, j) and time

step t + 1

h2(ut+1
ij − ut

ij) + τ(ut+1
i+1,j + ut+1

i−1,j + ut+1
i,j+1 + ut+1

i,j−1 − 4ut+1
ij ) = h2τf t+1

ij

Again, we get a matrix with five diagonals

Diagonal entries change with time steps
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2. Our goal / Reuse of approximations

Reuse of approximations of matrices in sequences of linear systems

Notation: Matrices: A0, A1, . . . Their approximations: M0, M1, . . .

Two basic strategies for the reuse

1. Reuse of patterns and values
● More at Householder Symposium XVI., May 23-27, 2005 Seven

Springs Mountain Resort.

2. Reuse of patterns of matrix approximations
● Using pattern of M i to get M i+k from Ai+k for some k ≥ 1

● Using a pattern of Âi (a part of Ai) to get M i+k from Ai+k for some
k ≥ 1

1st step: Gangster projection (Toint, 1977) Gpattern : IRn×n → IRn×n:

Âi+k
ij =

{
Ai+k

ij if (i, j) ∈ pattern

0 otherwise.

2nd step: Compute M i+k
ij from Âi+k

ij .
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2. Our goal / Matrices from FD

No problem if matrix approximations are readily available

But: matrices are often given only implicitly.

For example: linear solvers in Newton-Krylov framework (see, e.g., Knoll,
Keyes, 2004)

J(xk)∆x = −F (xk), J(xk) ≈ F ′(xk)

● Only matvecs F ′(xk)v for a given vector v are typically performed.
● Finite differences can be used to get such products:

F (xk + ǫv) − F (xk)

ǫ
≈ F ′(xk)v

matrices are always present in more or less implicit form: a tradeoff:
implicitness × fast execution appears in many algorithms

For strong algebraic preconditioners we need matrix approximations
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2. Our goal: Related approaches

Some related work

● Note: For some preconditioners (e.g., Jacobi, ILU(0)) we do not need to
get the matrix approximation

● Part of the matrix known in advance: partial graph coloring,
Gebremedhin, Manne, Pothen, 2003.

● Preconditioner computed from a related matrix, operator (e.g., based on
orthogonal grid, Truchas code, LANL, 2003; a lot of approaches)

● Reuse of the whole preconditioner (approximation) (both values and
structure) over a couple of steps, see Morales, Nocedal, 2000
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2. Our goal: Example of preconditioner reuse

An example of reuse of a preconditioner

The 2D nonlinear convection-diffusion problem (Kelley, 1995); 5-point
finite diferences; uniform grid 70 × 70; first 8 systems (the same behaviour

for the whole set of 14 systems); ILUT(0.1,5)

∆u − Ru∇u = 2000x(1 − x)y(1 − y), R = 500

A-matrix M-matrix CG − its

A1 M1 25

A2 M1 98

A3 M1 90

A4 M1 135

A5 M1 179

A6 M1 229

A7 M1 275

A8 M1 345

A1−8 M1−8 25 ± 10
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3. Matrix-free environment

Getting a matrix approximation stored implicitly: cases

● Get the matrix Ai+k by n matvecs Aej , j = 1, . . . , n (Inefficient)
● A sparse Ai+k can be often obtained via a significantly less matvecs

than n by grouping computed columns if we know its pattern.
❋ pattern (stencil) is often known (e.g., given by the problem grid in

PDE problems)
❋ often used in practice

● but for approximating Ai+k we do not need so much
● it might be enough to use an approximate pattern of a different but

structurally similar matrix
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4. Matrix estimation: I.

How to approximate a matrix by small number of matvecs if we know
matrix pattern:

Example 1: Efficient estimation of a banded matrix0BBBBBBBBBBBBBBBBB�

♠ ∗

♠ ∗ ∗

∗ ∗ ♠

∗ ♠ ∗

♠ ∗ ∗

∗ ∗ ♠

∗ ♠ ∗

♠ ∗

1CCCCCCCCCCCCCCCCCA

Columns with “red spades” can be computed at the same time in one
matvec since sparsity patterns of their rows do not overlap. Namely,

A(e1 + e4 + e7) computes entries in the columns 1, 4 and 7.
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4. Matrix estimation: II.

How to approximate a matrix by small number of matvecs if we know
matrix pattern:

Example 2: Efficient estimation of a general matrix




∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗




Again, By one matvec can be computed the columns for which sparsity
patterns of their rows do not overlap.
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4. Matrix estimation: II.

How to approximate a matrix by small number of matvecs if we know
matrix pattern:

Example 2: Efficient estimation of a general matrix




♠ ∗ ∗

♠ ∗ ∗

∗ ♠ ∗

♠ ∗ ∗

∗ ∗ ♠

∗ ∗ ♠




Again, By one matvec can be computed the columns for which sparsity
patterns of their rows do not overlap.

For example, A(e1 + e3 + e6) computes entries in the columns 1, 3 and 6.
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4. Matrix estimation: II.

How to approximate a matrix by small number of matvecs if we know
matrix pattern:

Example 2: Efficient estimation of a general matrix




♠ ♠ ♠

♠ ♠ ♠

♠ ♠ ♠

♠ ♠ ♠

♠ ♠ ♠

♠ ♠ ♠




Entries in A can be computed by four matvecs.
In each matvec we need to have structurally orthogonal columns.
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4. Matrix estimation: III.

Efficient matrix estimation: well established field

● Structurally orthogonal columns can be grouped

● Finding the minimum number of groups: combinatorially difficult
problem (NP-hard)

● Classical field: a (very restricted) selection of references: Curtis, Powell;
Reid,1974; Coleman, Moré, 1983; Coleman, Moré, 1984; Coleman,
Verma, 1998; Gebremedhin, Manne, Pothen, 2003.
❋ extensions to SPD (Hessian) approximations
❋ extensions to use both A and AT in automatic differentiation
❋ not only direct determination of resulting entries (substitution

methods)
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4. Matrix estimation: IV.

Efficient matrix estimation: graph coloring problem




♠ ♠ ♠

♠ ♠ ♠

♠ ♠ ♠

♠ ♠ ♠

♠ ♠ ♠

♠ ♠ ♠
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● In the other words, columns which form an independent set in the graph
of AT A (called intersection graph) can be grouped ⇒ a graph coloring
problem for the graph of AT A.

Problem: Find a coloring of vertices of the graph of AT A (G(AT A)) with
minimum number of colors such that edges connect only vertices of

different colors
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5. Partial matrix estimation: Example

Our matrix is defined only implicitly.
We need to compute an approximation M i+k using a pattern of M i or Âi.

Why?: because we strive to decrease the number of matvecs!

Digital Circuit Matrix memplus; n = 17758: Two pattern sizes of Âi

Size = 126150

MV = 353

Size_P ITS

221349 16

159570 20

151681 36

147823 43

112129 202

76502 181

76044 220

75359 236

Size_S = 59984

MV = 19

Size_P ITS

131266 43

92270 58

81379 32

69656 84

67042 83

66185 73

63910 170

63722 157
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5. Partial matrix estimation: Getting pattern

Our matrix is defined only implicitly.
⇓




♠ ♠ ♠

♠ ♠ ♠

♠ ♠ ♠

♠ ♠ ♠

♠ ♠ ♠

♠ ♠ ♠




Consider a new pattern: e.g.,
if the entries denoted by ♣ are small, number of groups can be decreased:
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5. Partial matrix estimation: Getting pattern

Our matrix is defined only implicitly.
⇓




♠ ♠ ♣

♠ ♣ ♠

♣ ♠ ♠

♠ ♠ ♣

♣ ♠ ♠

♠ ♣ ♠




♠ → ♠

♠ → ♠
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5. Partial matrix estimation: Incompleteness

Our matrix is defined only implicitly.




♠ ♠ ♣

♠ ♣ ♠

♣ ♠ ♠

♠ ♠ ♣

♣ ♠ ♠

♠ ♣ ♠




But: the computation of entries from matvecs is inexact



M. Tůma 18

6. Computational procedures: I.

Computational procedure I.

● Step 1: Compute pattern of Âi or M i. E.g., for Âi as sparsification of Ai:
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6. Computational procedures: I.

Computational procedure I.

● Step 1: Compute pattern of Âi or M i. E.g., for Âi as sparsification of Ai:




♠ ♠ ♣

♠ ♣ ♠

♣ ♠ ♠

♠ ♠ ♣

♣ ♠ ♠

♠ ♣ ♠




→




♠ ♠

♠ ♠

♠ ♠

♠ ♠

♠ ♠

♠ ♠
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6. Computational procedures: I.

Computational procedure I.

● Step 1: Compute pattern of Âi or M i. E.g., for Âi as sparsification of Ai:




♠ ♠ ♣

♠ ♣ ♠

♣ ♠ ♠

♠ ♠ ♣

♣ ♠ ♠

♠ ♣ ♠




→




♠ ♠

♠ ♠

♠ ♠

♠ ♠

♠ ♠

♠ ♠
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6. Computational procedures: I.

Computational procedure I.

● Step 1: Compute pattern of Âi or M i. E.g., for Âi as sparsification of Ai:

● Step 2: Graph coloring problem for the graph G(patternT pattern) to get
groups.
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6. Computational procedures: I.

Computational procedure I.

● Step 1: Compute pattern of Âi or M i. E.g., for Âi as sparsification of Ai:

● Step 2: Graph coloring problem for the graph G(patternT pattern) to get
groups.




♠ ♠

♠ ♠

♠ ♠

♠ ♠

♠ ♠

♠ ♠
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6. Computational procedures: I.

Computational procedure I.

● Step 3: Using matvecs to get Ai+k for more indices k ≥ 0 as if the
entries outside the pattern are not present

Notes:

● getting the entries from the matvecs spoiled by errors

● an approximation error for any estimated entry ãi,j in Ã:
∑

k∈{(i,k)∈A\P}

|aik|

A\P: entries outside the given pattern
● The error distribution can be strongly influenced by column grouping
● balancing the error
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6. Computational procedures: II.

Computational procedure II.
Preconditioner based on exact estimation of off-diagonals in of Ai

(diagonal partial coloring problem)




♠ ♠ ♠

♠ ♠ ♠

♠ ♠ ♠

♠ ♠ ♠

♠ ♠ ♠

♠ ♠ ♠







♠ ♠ ♣

♠ ♣ ♠

♣ ♠ ♠

♠ ♠ ♣

♣ ♠ ♠

♠ ♣ ♠




Consider a new pattern: e.g.,
if the entries denoted by ♣ are small, number of groups can be decreased:



M. Tůma 19

6. Computational procedures: II.

Computational procedure II.
Preconditioner based on exact estimation of off-diagonals in of Ai

(diagonal partial coloring problem)




♠ ♠ ♣

♠ ♣ ♠

♣ ♠ ♠

♠ ♠ ♣

♣ ♠ ♠

♠ ♣ ♠




♠ → ♠
Since all off-diagonals in columns 4 and 5 are computed precisely
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6. Computational procedures: II.

Computational procedure II.
Preconditioner based on exact estimation of off-diagonals in of Ai

(diagonal partial coloring problem)




♠ ♠ ♣

♠ ♣ ♠

♣ ♠ ♠

♠ ♠ ♣

♣ ♠ ♠

♠ ♣ ♠




♠ not → ♠
Because of row 1
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7. Numerical experiments: MEMPLUS

Matrix MEMPLUS again

No Sparsification

MV = 353

Sze_P ITS

221349 16

159570 20

151681 36

147823 43

112129 202

76502 181

76044 220

75359 236

68991 264

63093 272

59547 240

Size_S = 59984

MV = 19

Size_P ITS

131266 43

92270 58

81379 32

69656 84

67042 83

66185 73

63910 170

63722 157

63679 179

63669 178

62147 1121

Size_S = 62281

MV = 35

Size_P ITS

249209 17

154208 29

146159 48

85443 63

69762 466

68945 536

64261 449

62460 368

62254 285

62247 385

62246 398
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7. Numerical experiments: More matrices: 1/4

More matrices

Matrix Type n nnz

cube1 Heat Conduction 216 4096

gravflow1 2D Gravitational Flow 750 3580

gravflow2 2D Gravitational Flow 3750 23900

palloy2 Phase Change 29952 203312

palloy3 Phase Change 103200 707272

circuit_1 Digital Circuit 2624 35823

add20 Digital Circuit 2395 17319

add32 Digital Circuit 4960 23884

memplus Digital Circuit 17758 126150



M. Tůma 22

7. Numerical experiments: More matrices: 2/4

Full Matrix Estimation Partial Matrix Estimation

Matrix MV Size_P ITS MV Size_S Size_P ITS

cube1 27 3166 20 24 2168 3166 24

cube1 27 3636 17 25 2395 4084 18

gravflow2 11 14544 72 7 11830 14962 71

gravflow2 11 14244 75 7 11830 15334 53

palloy2 12 156321 5 9 150000 150788 6

palloy2 12 145144 6 9 150000 167887 6

palloy3 12 576185 6 8 509808 539460 7

palloy3 12 731472 6 8 509808 730851 7

sherman5 27 22159 54 19 11298 21187 55

sherman5 27 24848 43 19 12395 23949 43

add20 84 8611 15 5 8239 8031 16

add20 84 10972 14 5 8239 10112 15
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7. Numerical experiments: More matrices: 3/4

More matrices

Matrix Type n nnz

saylr3 Reservoir Simulation 1000 3750

sherman5 Reservoir Simulation 3312 20793

venkat01 2D Euler 62424 1717792

venkat25 2D Euler 62424 1717792

raefsky1 Flow 3242 294276

raefsky3 Flow 21200 1488768

raefsky5 Flow 6316 168658
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7. Numerical experiments: More matrices: 4/4

Full Matrix Estimation Partial Matrix Estimation

Matrix MV Size_P ITS MV Size_S Size_P ITS

saylr3 9 3337 41 7 3015 3339 41

saylr3 9 4002 24 7 3015 3993 26

circuit_1 2571 27749 9 4 7539 15118 11

circuit_1 2571 32943 8 5 9723 17347 10

venkat01 44 72393 160 36 1076995 72106 157

venkat01 44 80249 149 37 1362721 80035 147

raefsky1 140 99344 252 121 157585 92445 233

raefsky1 140 132646 286 89 113726 132646 286

raefsky5 65 22903 4 55 71573 26316 5

raefsky5 65 28785 4 58 88134 28325 5

raefsky3 93 2148096 53 82 960589 1663634 48

venkat25 44 2267958 116 43 1621131 2238075 118
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7. Numerical experiments: A sequence

Driven cavity flow, R = 500, ILUT(1.0 ∗ 10−6, 25); Newton’s method;
nonlinear residuals from 2.37D-2

No. A-matrix No. P-matrix CG − its

A1 M1 via A1 and pattern of bA1 44

A2 M2 via A2 and pattern of bA1 38

A3 M3 via A3 and pattern of bA1 41

A4 M4 via A4 and pattern of bA1 42

A5 M5 via A5 and pattern of bA1 43

A2 M2 via A2 and pattern of bA2 42

A3 M3 via A3 and pattern of bA3 38

A4 M4 via A4 and pattern of bA4 43

A5 M5 via A5 and pattern of bA5 42

Number of matvecs due to the use of sparsified patterns:

51 → 26
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8. Conclusions

● Matrix-free estimation of matrices can reuse a pattern of a former
member of a sequence of linear systems

● Reuse of pattern is connected with new graph coloring problems
(balanced coloring ; diagonally compensated coloring)

● Experiments confirm usefulness of this approach for solving a sequence
of similar linear systems
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lung1 Biomedical 1650 7419

stomach Biomedical 213360 3021648

wang1 Semiconductors 2903 19093

appu NASA Benchmark 14000 1853104
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Basic approximation/Our results

mat n nnz mv sizep it

c1 216 4096 27 4438 7

g1 750 3580 7 2909 14

g2 3750 23900 11 14544 23

l1 9000 60000 12 9000 12

l1 9000 60000 12 133505 10

p0 3072 20096 12 3072 3

s2 1280 7648 10 1280 40

mat n nnz mv sizep it

c1 216 4096 24 4438 10

c1 216 4096 21 2579 10

c1 216 4096 12 1468 11

g1 750 3580 5 2909 14

g2 3750 23900 6 14544 23

l1 9000 60000 7 31959 40
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Other matrices

VENKAT01
n nnz mv sizep it

62424 1717792 44 80249 99

62424 1717792 41 80219 99

62424 1717792 38 80099 94

62424 1717792 36 79421 98

MEMPLUS (circuit matrix)
n nnz mv sizep it

17958 97460 353 17912 543

17958 97460 19 17912 543

17958 97460 35 17912 543
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ADD32
n nnz mv sizep it

4960 19842 15 4960 55

4960 19842 15 7136 28

4960 19842 5 4960 55

4960 19842 5 7136 28

ADD20
n nnz mv sizep it

2395 13151 84 3260 118

2395 13151 5 3260 118
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