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/%’6/ 1. Continuous formulation and discretization: |.

General model of contaminant transport

05(c)
ot

V.(SVec)+ uV.(ev) + F(c) = ¢

degenerate parabolic equation: for convection - reaction - diffusion

c. concentration of contaminant

S: diffusion - dispersion tensor

v. velocity of the convection

b scalar parameter

F'. changes due to chemical reactions

q: sources
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/%’6/ 1. Continuous formulation and discretization: Il.

Our restrictions / specific features

Here we restrict ourselves to the flow problem only: computing velocity
v for the model from the Darcy’s law

Follow-up: preconditioning sequences of linear systems: talk at Seven
Springs, May 23-27, 2005

Application-based discretization
0 in 2D projection determined by physically drilled holes

0 possible different vertical positions of points of measurements

Only partially interested in asymptotic complexity:
0 size of constants in efficiency evaluations is crucial

Physical conditioning (in the flow tensor) is important
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4’6/ . Continuous formulation and discretization: Ill.

The modelled domain is flat and layered

e

discretized area in a thin layer
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/%’6/ 1. Continuous formulation and discretization: IV.

Equations for the velocity vector
(Stationary potential fluid flow problem)

The Continuity Equation

V-u = q,

Darcy’s Law

u=—-AVp

The Boundary Conditions

p=pp ONIp
—1n.(AVp) =n.u=uy on oy
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/%’6/ 1. Continuous formulation and discretization: V.

FEM Approximation

e Lowest-order Raviart-Thomas-Nédelec elements:
0 extension of 2D elements (Raviart, Thomas, 1977) into 3D elements
(Nédelec, 1980)

0 pressure p is elementwise constant

0 velocity u is elementwise linear
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4’6/ 1. Continuous formulation and discretization: VI.

Hybridization / Problem stretching

e enables natural condensation of unknowns to those coresponding to
non-Dirichlet faces (Fraejis de Veubeke, 1965)

 larger, but more transparent system matrix
e other ways of condensation of unknowns (MarysSka, Rozloznik, T., 1998)

e simple aposteriori updates in the matrix
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4’6/ 2. System matrix: .

Matrix Structural Properties

e (B|C:1]|C5) is an incomplete incidence matrix of a graph (some columns
are missing)

e At least one Dirichlet condition =— matrix regularity
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2. System matrix: Il.
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4’6/ 2. System matrix: Ill.

Matrix Spectral Properties

C1 C9
[ h ) h ]
from the properties of the discretization

g(A) C

sv(B C) C [esh, cq]

Conditioning of the whole indefinite matrix after appropriate diagonal
scaling of the matrix: O(h_Q)

(see Maryska, Rozloznik, T., 1995, 1996)
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/%’6/ 3. Solution approaches: Null-space approach: I.

Motivation

Methods based on null-space basis of (B C)?

o useful when geometry fixed and iterative changes in material properties
(solving inverse problems)

e sequences of time-dependent and nonlinear problems

Two basic strategies

e use divergence-free finite elements: the null-space approach embedded
In formulation

 algebraic null-space basis construction
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/%’6/ 3. Solution approaches: Null-space approach: Il.

/

Divergence-free finite elements

e needed vector potentials of functions in an appropriate Sobolev space
e Raviart-Thomas-Nédelec elements as 3D curls of these potentials

e finding a linearly independent set of the potentials can be based on
Nédelec edge elements

0 taking curls of all edge elements, eliminating the kernel later
(Hiptmair, Hoppe, 1999)

0 finding a basis based on a spanning tree graph of the discretization
(Cal, Parashkevov, Russell, Ye, 2002; Scheichl, 2003)

0 not clear how to generalize the procedure to unstructured meshes
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/

Algebraic null-space based approaches

e Find a null-space basis 7
(BC, C)'Z =0
e Solve the projected system

ZTAZUQ = ZT(ql — Aul)
Possible methods

1. (fundamental; spanning tree-based) cycle null-space basis based on
iIncidence vectors of cycles in the mesh

2. orthogonal null space basis
based on QR decomposition of (B C; C5)

3. partial null space basis (formed only for a part of offdiagonal blocks of
the matrix, namely for the matrix (Cy C5))
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/%’6/ 3. Solution approaches: Null-space approach: Ill.
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4’6/ 3. Solution approaches: Null-space approach: V.

/

1. Fundamental cycle null-space basis

» find a (shortest path) spanning tree

e form cycles using non-tree edges

(Arioli, MarysSka, Rozloznik, T., 2001)
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4’6/ 3. Solution approaches: Null-space approach: V.

Relative residual norm

1 C 2

7l L= aoy el

< 2

|70 14+ L /ap2
C10 C2

n
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4’6/ 3. Solution approaches: Null-space approach: VI.

Fundamental Cycle Null-Space Approach: unpreconditioned and
smoothed CG applied to the projected system

o CG method applied to the projected system using fundamental cycle null-space basis
100 ¢ T T

107 \

i\
1072 »
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10° »

107k
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iteration number

IrCRI ™ )
lim ( L ) S 1 — Cgh

n=oo \ ol
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/%’6/ 3. Solution approaches: Null-space approach: VII.

/

 In practice better than in theory

e explicit assembly of the projected system is feasible, but: difficult to
precondition
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/%’6/ 3. Solution approaches: Null-space approach: VIII

2. Orthogonal null-space basis

e based on sparse QR of (B C; Cs) (in our case, MA49 from HSL)

e projected system independent of h

e subsequent table: comparison of fundamental cycle approach (FC)
versus orthogonal null-space basis approach (QR)

19
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/ 3. Solution approaches: Null-space approach: IX.

/
memory requirements iteration counts

h QR FC QR FC

NNZ(QR) | NNZ(Z1) QR/SN UN

1/5 28360 3360 22/20 71
(3e-2) (7e-3) (0.17/0.44) (0.08)

1/10 410466 47120 22/21 163
(0.97) (0.07) (1.87/4.23) (1.57)

1/15 1979203 226780 22/21 252
(9.73) (0.30) (8.48/17.1) (19.9)

1/20 7120947 697840 22/21 346
(59.6) (0.93) (25.0/48.6) (75.9)

1/25 18105131 1675800 22/21 438
(237) (2.21) (57.2/107) (222)

1/30 40837823 3436160 21/21 523
(980) (4.60) (110/214) (510)

1/35 — 6314420 — 596
(8.64) (1009)

1/40 — 10706080 — 670
(14.8) (1900)
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4’6/ 3. Solution approaches: Null-space approach: X.

3. (Partial) null-space basis for the block (C; Cs)
(C1 Co)'Z =0

(Arioli, MarySka, Rozloznik, T., 2001)

ZTAZ ZTB U9 . ZT(ql — Aul)
BTZ P - g2 — B uy

Singular values of Z7' B

SU(ZTB) C [Clgh, 613]
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/%’6/ 3. Solution approaches: Null-space approach: XI.

Inclusion set
1 2 > Ch,o 1 2 2
[5(01 — /€1 +4C13a_gh ]U[0175(02‘|‘ cy + 4ciz))

Asymptotic convergence factor

lim (H%H) ' <1-—-cy4h

n—-+oo \ [[7ol|

Some results with the partial null-space approach follow
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/

partial sparse QR

h NNZ IP/1Q NNZ(QR) QR/SN

1/5 14375 62/35 20834 18/14
(0.05/0.03) (0.02) (0.09/0.09)

1/10 123000 103/64 356267 19/16
(0.68/0.48) (0.35) (1.11/0.89)

1/15 424125 144/93 1840670 21/15
(5.17/3.79) (3.14) (6.09/4.63)

1/20 | 1016000 186/118 6322468 21/15
(20.2/14.2) (17.97) (18.3/14.94)

1/25 | 1996875 225/145 16661544 23/15
(50.8/37.4) (86.6) (47.0/27.8)

1/30 | 3465000 260/174 40669978 22/15
(111/84.2) (584) (96.7/85.5)

1/35 | 5518625 295/204 — —
(224/173)

1/40 | 8256000 331/230 — —
(383/295)
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/ 3. Solution approaches: Null-space approach: XII.
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4’6/ 3. Solution approaches: Null-space approach: XIlI|

Partial null-space approach: preconditioned and smoothed CG applied to
the projected system

precon ditioned CG method applied to the projected system using partial null-space basis
T T
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both in theory and in practice:
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/é’@/ 5. Application / |.

Region under consideration
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4’6/ 5. Application / Il.

Detailed 3D view
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4’6/ 5. Application / IlI.

Specific 3D Applications

e Transport of contaminants in porous media
0 Finite volumes, splitting convection and diffusion at each time step

e Flow in fractured and anisotropic rocks
0 Combining two grids: network of fractures and FEM discretization of
porous substrate

o Calibration of flow/transport models
(Vohralik, 2004)
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4’6/ 5. Application / IV.

Examples

e Contaminant transport with dual porosities for remediation (grid)
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4’6/ 5. Application / V.

Examples

o Contaminant transport with dual porosity for remediation (drilled holes)
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/ 5. Application / VI.

Examples

e Mine flooding (grid)
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/ 5. Application / VII.

Examples

e Mine flooding (grid with velocities)
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/ 5. Application / VIII.

Examples

e Mine flooding (3D grid)
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4’6/ 5. Application / IX.

Animations

Mine flooding (animation of pressure development)

Mine flooding (animation of contamination development)
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4’6/ 5. Conclusions

/

Conclusions

 FEM hybridization is an important tool also from algebraic point of view.
e Algebraic null-space based methods useful feasible in 3D.

* Null-space approach (its partial variant) is a reasonable alternative for
solving nonlinear and time-dependent problems.

e A step for cheap solving sequences of linear systems (see the talk at
Seven Springs in a couple of days)
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