
On solving symmetric indefinite systems by
preconditioned iterative methods

Miroslav Tůma
Institute of Computer Science

Academy of Sciences of the Czech Republic

and Technical University in Liberec

based on joint work with

Michele Benzi

Supported by the project

“Information Society” of the Academy of Sciences of the Czech Republic

under No. 1ET400300415

76th Annual GAMM conference, Luxembourg, March 28 – April 1, 2005

M. Tůma 2

Outline

1. The problem and its motivation

2. Indefinite solvers - an overview

3. Preconditioned iterative methods

4. Matrix preprocessings

5. Numerical experiments

6. Conclusions

M. Tůma 3

1. The problem and its motivation

1. Solving systems with symmetric, generally indefinite matrix

Ax = b

Arise in many important applications

● Saddle-point problems (CFD, mixed FEM, KKT systems in optimization,
optimal control, . . .)

● Helmholtz equation
● “Shift-and-invert”, Jacobi-Davidson algorithms

Efficient solvers and theory exist for some problems (e.g., saddle-point
ones. General case seems to be very difficult.

M. Tůma 4

2. Indefinite solvers – an overview

Saddle-point problems: specialized solvers

A B

BT −C

● Reduction to a definite system
❋ Schur complement approach
❋ dual variable (null-space) approach

● Solving original indefinite system
❋ direct solvers
❋ preconditioned iterative solvers

(block DIAG, block TR, constraint preconditioners,
inner block reductions)

● Split and solve approaches (HSS iterations, HSS preconditioners)

M. Tůma 5

2. Indefinite solvers – an overview: II.

Our focus: general indefinite systems
● Sparse direct methods (MA27, MA47, MA57; Duff et al., Pardiso;

Schenk and Gärtner)
❋ very powerful; have inherent limits of direct methods

● Preconditioned iterative methods
❋ SSOR, block SSOR and symmetric ILUT preconditioners (Freund,

1994, 1997)

❋ Diagonal pivoting and inverse diagonal pivoting preconditioners;
symmetric Krylov methods (Benzi, T., 2002); often useful for weakly
indefinite systems

❋ Approximate diagonal pivoting decompositions (right-looking, based
on linked-lists) for smoothing (Qu, Fish, 2001)

❋ Diagonal pivoting preconditioners with diagonal
and Bunch-Kaufmann pivoting (left-looking);
nonsymmetric Krylov methods (Li, Saad, 2004).

❋ Polynomial preconditioners (Saad (1983), Ashby, Manteuffel & Saylor
(1989) and Freund (1991).)

M. Tůma 6

3. Preconditioned iterative methods

Our focus, in particular: preconditioned iterative methods

Widely used Krylov methods for symmetric indefinite systems

● MINRES

● SYMMLQ

● simplified QMR

Preconditioning: an example

M
−1

Ax = M
−1

b (1)

● can be positive definite

● or indefinite

● or even a nonsymmetric solver can be used

M. Tůma 7

3. Preconditioned iterative methods

Preconditioning: strategies

Positive definite preconditioning

● MINRES and SYMMLQ can be preconditioned, but the transformation is
not straightforward, see, e.g., Battermann, 1998.

● Straightforward preconditioning of smoothed CG (equivalent to
MINRES)

● Often rather weak

Indefinite preconditioning

● Can be plugged-in in the same way as above; simplified QMR often
used as an accelerator

● In practice: Very often useful

● Which of the above algorithms, if any, is theoretically sound? See the
talk of Miro Rozložník from Algoritmy 2005.

M. Tůma 8

3. Preconditioned iterative methods

Preconditioning: theory and practice

● Theoretical insufficiencies reflected in experimental results.
❋ The problem is difficult: implementations/algorithms typically very

fragile with respect to parameters

❋ In many cases, specialized solvers (e.g., reduction based) much
better than black-box general indefinite preconditioners

❋ Often: Converge fast or never. This effect much more profound than
in nonsymmetric or SPD solvers.

● In spite of this: It is worth to develop strategies to precondition
symmetric indefinite solvers.

Consider two preconditioner classes

● Incomplete factorizations
● Sparse approximate inverses

M. Tůma 9

3. Preconditioned iterative methods

Preconditioning: our options

● Right-looking (submatrix) implementation of incomplete decompositions

● Bunch-Parlett-Kaufmann family of pivoting options
❋ Bunch-Parlett with various pivotings

❋ Bunch-Kaufmann variations

❋ Bounded Bunch-Kaufmann (Ashcraft, Grimes, Lewis, 1997)

❋ Bunch tridiagonal pivoting (Bunch, 1973; Hagemann, Schenk, 2004),
Bunch-Kaufmann pentadiagonal pivoting

❋ approximate LDLT decomposition

M. Tůma 10

3. Preconditioned iterative methods

Preconditioning: our options (continued)

● Sparse LTLT decomposition
❋ Slow (fill-in in exact case given by

∑n

i=1
adj(T [i]), see Ashcraft,

Grimes, Lewis, 1997)

❋ if incomplete, large growth in the submatrix
● Saddle-point reconstruction

❋ A =

(

Â B̂

B̂T −Ĉ

)

❋ sometimes useful

❋ not much improvement for strongly indefinite problems
● Block diagonal, block symmetric Gauss-Seidel; blocks based on

matchings or TPABLO (O’Neil, Szyld,1990); matching-based
preprocessings

M. Tůma 11

3. Preconditioned iterative methods

Bunch-Kaufmann pivoting (Treated in detail in the talk by Olaf Schenk)

Algorithm 1 Bunch-Kaufmann pivoting strategy for an k-th step of
diagonal pivoting decomposition P T AP ≈ LDLT , where D is a block
diagonal matrix with blocks of the size 1 × 1 or 2 × 2, P is a permutation
matrix of the dimension n and L is a block unit lower triangular matrix of
the dimension n with blocks conforming to those of D. Parameter α

balances 2 × 2 and 1 × 1 pivots.

(1) if |akk| ≥ α|akl| then use |akk| as a 1 × 1 pivot

(2) elseif |akkals| ≥ αa2
kl then use |akk| as a 1 × 1 pivot

(3) elseif |all| ≥ αals then use |all| as a 1 × 1 pivot

(4) else use the submatrix determined by rows and columns l and k as a
2 × 2 pivot

M. Tůma 12

3. Preconditioned iterative methods

Factorized approximate inverse preconditioning (BKSAINV)

Algorithm 2 Indefinite right-looking BKSAINV algorithm
Construct the block unit upper triangular matrix Z ∈ IRn×n with N column
blocks Z = [Z1, Z2, . . . , ZN] ∈ IRn×n and the block diagonal matrix
D = diag(Dk)k=1,N ∈ IRn×n such that ZT AZ = D.

(1) set Z = I, count = 0
(2) for k = 1, . . . , N
(3) find a pivot block column Zp composed from one or two columns

which we denote by zi or zi, zi+1, respectively
(4) if Zp ≡ zi then count = count + 1 else count = count + 2

(5) Dp = ZT
p AZp, Either Dp ∈ R or Dp ∈ R2×2.

(6) for j = count + 1, . . . , n
(7) Ppj = ZT

p Azj

(8) zj = zj − ZpD
−1
p Ppj

(9) end j

(10) end k

M. Tůma 13

4. Matrix preprocessing

Matrix preorderings: standard nonsymmetric case

● permutation to get a nonzero diagonal –
a classical technique for nonsymmetric matrices (Duff, 1977)

∗ ∗ ∗

∗ ∗

∗ ∗ ∗

∗ ∗

∗

M. Tůma 13

4. Matrix preprocessing

Matrix preorderings: standard nonsymmetric case

● permutation to get a nonzero diagonal –
a classical technique for nonsymmetric matrices (Duff, 1977)

∗ ∗ ♠

∗ ♠

∗ ♠ ∗

∗ ♠

♠

M. Tůma 13

4. Matrix preprocessing

Matrix preorderings: standard nonsymmetric case

● permutation to get a nonzero diagonal –
a classical technique for nonsymmetric matrices (Duff, 1977)

∗ ∗ ♠

∗ ♠

∗ ♠ ∗

∗ ♠

♠

♠ ∗ ∗

♠ ∗

∗ ♠ ∗

∗ ♠

♠

M. Tůma 13

4. Matrix preprocessing

Matrix preorderings: standard nonsymmetric case

● permutation to get a nonzero diagonal –
a classical technique for nonsymmetric matrices (Duff, 1977)

∗ ∗ ∗

∗ ∗

∗ ∗ ∗

∗ ∗

∗

1

2

3

4

5

1

2

3

4

5

’

’

’

’

’

M. Tůma 13

4. Matrix preprocessing

Matrix preorderings: standard nonsymmetric case

● permutation to get a nonzero diagonal –
a classical technique for nonsymmetric matrices (Duff, 1977)

∗ ∗ ♠

∗ ♠

∗ ♠ ∗

∗ ♠

♠

1

2

3

4

5

1

2

3

4

5

’

’

’

’

’

M. Tůma 14

4. Matrix preprocessing

Matrix preorderings: powerful nonsymmetric case

● Using values of matrix entries: strengthening diagonal/block-diagonal
dominance

● Useful in both direct solvers and preconditioned iterative solvers
❋ e.g. sum/product matching problem – maximize

sum/product of modules of transversal entries

❋ Olschowka, Neumaier, 1999; Duff, Koster, 1997, 2001; Benzi, Haws,
T., 1999.

❋ But: permutations are generally nonsymmetric

M. Tůma 15

4. Matrix preprocessing: I.

Matrix preorderings: symmetric case

● start with our example

∗ ∗ ∗

∗ ∗

∗ ∗ ∗

∗ ∗

∗

1

2

3

4

5

1

2

3

4

5

’

’

’

’

’

M. Tůma 15

4. Matrix preprocessing: I.

Matrix preorderings: symmetric case

● start with our example

∗ ∗ ♠

∗ ♠

∗ ♠ ∗

∗ ♠

♠

1

2

3

4

5

1

2

3

4

5

’

’

’

’

’

M. Tůma 15

4. Matrix preprocessing: I.

Matrix preorderings: symmetric case

● start with our example

∗ ∗ ♠

∗ ♠

∗ ♠ ∗

∗ ♠

♠

1

2

3

4

5

1

2

3

4

5

’

’

’

’

’

But the permutation is nonsymmetric

M. Tůma 15

4. Matrix preprocessing: I.

Matrix preorderings: symmetric case

● start with our example

∗ ∗ ♠

∗ ♠

∗ ♠ ∗

∗ ♠

♠

1

2

3

4

5

1

2

3

4

5

’

’

’

’

’

But the permutation is nonsymmetric
Idea of Iain Duff and John Gilbert (2002) – split the loops of a

nonsymmetric permutation

M. Tůma 16

4. Matrix preprocessing: II.

Matrix preorderings: symmetric case: symmetrization based on loops

1

2

3

4

5

1

2

3

4

5

’

’

’

’

’
1

5

2 3

4

M. Tůma 16

4. Matrix preprocessing: II.

Matrix preorderings: symmetric case: symmetrization based on loops

1

2

3

4

5

1

2

3

4

5

’

’

’

’

’
1

5

2 3

4

∗ ∗ ∗

∗ ∗

∗ ∗ ∗

∗ ∗

∗

→

∗ ∗ ∗

∗

∗ ∗

∗ ∗ ∗

∗ ∗

M. Tůma 16

4. Matrix preprocessing: II.

Matrix preorderings: symmetric case: symmetrization based on loops

1

2

3

4

5

1

2

3

4

5

’

’

’

’

’
1

5

2 3

4

∗ ∗ ∗

∗ ∗

∗ ∗ ∗

∗ ∗

∗

→

0 * ∗

* 0

0 * ∗

∗ * 0 ∗

∗ ∗ 0

M. Tůma 17

4. Matrix preprocessing: III.

Matrix preorderings: symmetric case: symmetrization based on loops

● Summarized idea:
❋ bipartite matching → nonsymmetric permutation

❋ loops → general matching

● Previous work based on this strategy:
❋ static preordering for direct methods: Duff, Pralet, 2004; additional

criterion: based on sparsity of rows/columns

❋ preordering for approximate decompositions for preconditioning :
Hagemann, Schenk, 2004

M. Tůma 18

4. Matrix preprocessing: IV.

Matrix preorderings in symmetric case: new idea: general graph matching

∗ ∗ ∗

∗ ∗

∗ ∗ ∗

∗ ∗

∗

1

5 4

3

2

M. Tůma 18

4. Matrix preprocessing: IV.

Matrix preorderings in symmetric case: new idea: general graph matching

∗ ∗ ∗

∗ ∗

∗ ∗ ∗

∗ ∗

∗

1

5 4

3

2

M. Tůma 18

4. Matrix preprocessing: IV.

Matrix preorderings in symmetric case: new idea: general graph matching

∗ ∗ ∗

∗ ∗

∗ ∗ ∗

∗ ∗

∗

1

5 4

3

2

● avoids problems with splitting odd loops

M. Tůma 18

4. Matrix preprocessing: IV.

Matrix preorderings in symmetric case: new idea: general graph matching

∗ ∗ ∗

∗ ∗

∗ ∗ ∗

∗ ∗

∗

1

5 4

3

2

● avoids problems with splitting odd loops

● how to define graph edge weights?

M. Tůma 19

4. Matrix preprocessing: V.

How to define graph weights

● first possibility:
weightij = |aij | + α(|aii| + |ajj |)

● α balances influence of diagonals and off-diagonals

∗ ∗ ∗

∗ ∗

∗ ∗ ∗

∗ ∗

∗

1

5 4

3

2

M. Tůma 19

4. Matrix preprocessing: V.

How to define graph weights

● first possibility:
weightij = |aij | + α(|aii| + |ajj |)

● α balances influence of diagonals and off-diagonals

∗ ∗ ∗

∗ ∗

∗ ∗ ∗

∗ ∗

∗

1

5 4

3

2

w_15

w_13

w_43w_24

w_23

M. Tůma 19

4. Matrix preprocessing: V.

How to define graph weights

● first possibility:
weightij = |aij | + α(|aii| + |ajj |)

● α balances influence of diagonals and off-diagonals

∗ ∗ ∗

∗ ∗

∗ ∗ ∗

∗ ∗

∗

1

5 4

3

2

w_15

w_13

w_43w_24

w_23

general weighted matching + block construction

M. Tůma 20

4. Matrix preprocessing: V.

Another way to define graph weights

● derived (doubled) graph

1

5 4

3

2

1

5 4

3

2

’

’ ’

’

’

M. Tůma 20

4. Matrix preprocessing: V.

Another way to define graph weights

● derived (doubled) graph

1

5 4

3

2

1

5 4

3

2

’

’ ’

’

’abs(a_23)

and so on ...

abs(a_22)

M. Tůma 20

4. Matrix preprocessing: V.

Another way to define graph weights

● derived (doubled) graph

1

5 4

3

2

1

5 4

3

2

’

’ ’

’

’abs(a_23)

and so on ...

abs(a_22)

● enables better separation of 1 × 1 and 2 × 2 blocks

M. Tůma 20

4. Matrix preprocessing: V.

Another way to define graph weights

● derived (doubled) graph

1

5 4

3

2

1

5 4

3

2

’

’ ’

’

’abs(a_23)

and so on ...

abs(a_22)

● enables better separation of 1 × 1 and 2 × 2 blocks

● more time-consuming

M. Tůma 21

5. Experimental results

Some parameters of experiments

● preconditioned minimum residual method (implemented as smoothed
CG;
similar results for preconditioned simplified QMR)

● MMD on blocks/vertices
● Results with incomplete decompositions; tridiagonal pivoting in most

cases; whenever this fails, replaced by Bunch-Kaufmann pivoting
● bipartite matching by MC64 (Duff, Koster, 2001; HSL)
● general matching by a greedy heuristic (tested also Blossom 3 (Cook,

Rohe, 1998); SMP (Burkard, Derigs, 1980); WMATCH (Rothberg,
1973)).

● in some cases: other preprocessings are better, e.g., TPABLO (O’Neil,
Szyld, 1990)

● stopping criterion: relative residual norm reduction by 10−8

● a subset of matrices from Li, Saad (2004); Hagemann, Schenk (2004)

M. Tůma 22

5. Experimental results

Tested matrices

Matrix n nz

C-41 9769 55757

C-19 2327 12072

C-64 51035 384438

C-70 68924 363955

C-71 76638 468096

traj33 20006 504090

traj27 17148 242286

stiff5 33410 177384

mass05 33410 241140

heat02 10295 90129

M. Tůma 23

5. Experimental results

Some results of comparison of preprocessings

symm matching general matching no matching
Matrix Size_p its Size_p its Size_p its

C-41 118323 315 117168 129 100648 23

C-19 26411 7 26805 8 27833 5

C-64 604274 63 615061 55 493287 184

C-70 1186138 12 1162256 9 865192 8

C-71 1421761 15 1421994 45 1388772 117

traj33 221223 464 102629 186 102024 146

traj27 106633 471 105819 140 104679 153

stiff5 202983 80 217119 72 287761 166

mass05 41817 24 41216 52 56865 †

heat02 247912 34 410773 45 631236 53

M. Tůma 24

6. Conclusions

Conclusions and future work

● Incomplete diagonal pivoting preconditioning can help in many cases
❋ remind that it is very fragile

❋ some problems (shifted Laplacians) still a challenge

● Block preprocessing techniques can improve the behavior of solvers;
the techniques should be developed further

● All preprocessings: still not mature

● Solving general indefinite systems is very difficult: in many cases only
one of more specialized techniques (Schur complement approach, dual
variable approach) works

	Outline
	1. The problem and its motivation
	2. Indefinite solvers -- an overview
	2. Indefinite solvers -- an overview: II.
	3. Preconditioned iterative methods
	3. Preconditioned iterative methods
	3. Preconditioned iterative methods
	3. Preconditioned iterative methods
	3. Preconditioned iterative methods
	3. Preconditioned iterative methods
	3. Preconditioned iterative methods
	4. Matrix preprocessing
	4. Matrix preprocessing
	4. Matrix preprocessing
	4. Matrix preprocessing
	4. Matrix preprocessing

	4. Matrix preprocessing
	4. Matrix preprocessing: I.
	4. Matrix preprocessing: I.
	4. Matrix preprocessing: I.
	4. Matrix preprocessing: I.

	4. Matrix preprocessing: II.
	4. Matrix preprocessing: II.
	4. Matrix preprocessing: II.

	4. Matrix preprocessing: III.
	4. Matrix preprocessing: IV.
	4. Matrix preprocessing: IV.
	4. Matrix preprocessing: IV.
	4. Matrix preprocessing: IV.

	4. Matrix preprocessing: V.
	4. Matrix preprocessing: V.
	4. Matrix preprocessing: V.

	4. Matrix preprocessing: V.
	4. Matrix preprocessing: V.
	4. Matrix preprocessing: V.
	4. Matrix preprocessing: V.

	5. Experimental results
	5. Experimental results
	5. Experimental results
	6. Conclusions

